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Abstract 
This paper presents the overall method 

followed to develop the stochastic algorithm 
based on Montecarlo simulations used by 
PROESTOP, a tool that estimates the runway 
occupancy time for arrivals (ROTA) and 
provides new exit taxiways optimum allocation 
on a given scenario. The tool, developed by 
INECO, is currently in use in different projects, 
namely the development and revision of 
Spanish airports master plans, the SPADE 
project within the VI EU Framework 
Programme and more recently, after the 
acquisition of a license, in support to studies 
carried out by Eurocontrol. 

This paper describes the whole process 
from the review of existing methods to the final 
validation of the model: Reasons for actual data 
need, and existing models deficiencies are 
mentioned and illustrated. Data survey design, 
execution and post-process is presented, 
including estimation of errors, outliers 
identification and fitting regression models. 
Discussion of most influence variables on 
ROTA, based on statistical analysis, is 
summarised. An alternative clustering of aircraft 
models attending their performances is 
introduced. An Estimated Logistic regression 
model is described to estimate the exit taxiway 
probability. Different alternative speed 
functions along the runway are presented and 
compared with actual landing data. The steps 
required to deal with a stochastic model based 
on Montecarlo simulations are described. The 
use of standard (Normal, Erlang, etc.) and non-
standard (Johnson curves) probability 
distribution for fitting the input variables was 
introduced. Description and outcomes of the 
validation process are presented. And, finally, 
the current applications of the tool are 
mentioned. 

Introduction 
INECO, the leading Spanish consultancy 

and engineering firm specialised in the transport 

industry, has developed, using internal R&D 
funding, a tool for the assessment of runway 
occupancy time and runway exit taxiway 
allocation (PROESTOP). The objective of the 
project was to develop a friendly, flexible and 
reliable tool for evaluating and proposing 
optimal allocation of new exit taxiways on a 
given scenario. 

The main factor to be considered when 
assessing new exit taxiways is runway 
occupancy time on arrival (ROTA). Therefore, a 
model for estimating ROTA was developed. 

The overall project was broken down into 
five phases: review of existing methods, actual 
data survey, statistical analysis, modelisation 
and validation. A brief summary on these 
phases as well as the description of the resulting 
software tool are presented in this paper  

Background. Review of existing 
methods 

Need for an actual data survey. 
ROTA is defined as the time elapsed since 

the landing aircraft flies over the threshold to 
the moment when the plane vacates the runway 
by an exit taxiway [1][9]. Typically, methods 
for estimating ROTA are based on kinematic 
formulae, simulations or local ROTA surveys. 
As in any other engineering problem, a trade-off 
between precision and required effort must 
exists. 

Whilst data collection ensures the most 
accurate estimates of ROTA for the local 
conditions (provided a sufficient sample size), it 
also entails the highest costs in time and 
resources. Furthermore, depending on the local 
conditions the actual ROTA for the current 
situation might not be enough to analyse what-if 
scenarios (for instance, the impact of a new exit 
taxiway might not be extrapolated from existing 
ones). Examples of different data acquisition 
methodologies designed by Eurocontrol, Aena, 
NATS or LVNL can be found in [1]. 
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The alternative are the analytical methods, 
which are more economical and simple options. 
The most popular ones are the kinematic 
formulae (i.e., assuming a constant deceleration 
profile) [7] or the Runway Exit Design 
Interactive Model (REDIM v2.1), a simulation 
model carried out for the Federal Aviation 
Administration (FAA) as part of a research 
grant with Virginia Tech [14]. 

The kinematic formulae base their analysis 
on an average performance of the aircraft. But 
daily experience proves that actual ROTA 
shows a great dispersion, which affect on the 
predictability of the operation and therefore on 
the decisions that pilots and controllers must 
take. 

On the contrary, REDIM applies an 
stochastic model to deal with uncertainty. But 
deceleration and turnoff speed, which in the 
"real world" are decided on a case by case basis 
by the pilots, are defined as input data and, 
therefore the user must know it in advance to 
introduce it as a given constant value. The 
model has been used in Spanish airports, but a 
case by case calibration with actual data was 
required [9]. 

Therefore, an actual data survey was 
designed to obtain information about the factors 
affecting landing operation. The final objective 
was to develop a model to reproduce the aircraft 
performance on the runway, taking into account 
the variability of both input and output data. 

Actual data survey 

Design and preparation of the survey 
The data acquisition consisted on the 

recording of the time over designed 
intermediate points along the runway, based on 
visual observations from the tower of control.  

The selected scenario was runway 33 at 
Madrid-Barajas airport (Figure 1). At the time 
of the survey four rapid exit taxiways (RETs) 
and three right-angle exits were available on the 
runway. 

The intermediate points, between the 
threshold and the exit taxiways, were selected 
so that a clear visual reference could be 
established. The landing distance for each point 
is computed as the intersection of the sight line 
from the tower and the runway centreline (Table 
1). 

Some of these points are exit taxiways (#7-
#14). So the number of intermediate points 
available for each flight varies from 8 up to 14 
depending on the turn off point. 

Finally, touchdown is defined as an extra 
event for recording. As no distance 
measurement is feasible during the data 
acquisition, only the time of the event is 
recorded. 

The parallax error was computed for each 
point to verify that an adequate precision could 
be achieved by this procedure. 

Figure 1.  Data acquisition layout 

Given the perpendicular distance from the 
observer to the runway centreline, and the angle 
to the reference point, the error of the visual 
observation at a point x (dTx) is given by: 
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Figure 2.  Parallax error  

Given the actual distance from the tower 
(650m) and provided a typical landing speed at 
each point (from 60 m/s on threshold to 5 m/s 
on vacating) and a typical angle resolution of 
the human eye (dθ=1 minute of arc) [2], the 
parallax error is estimated at each intermediate 
point. 

As later confirmed, it was observed that 
even in the worst case (aircraft vacating by the 
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last exit) the visual error (0.3 seconds) would be 
less than the sampling error (0.4 seconds) 
(Table 1). Hence it was assumed that the visual 
error was included in the overall sampling error 
[3]. 

Data acquisition process 
The survey was performed for three weeks 

preferably during the peak hours of traffic, not 
only to obtain more data but also to ensure high 
demand conditions. Besides the runway 
occupancy times, the flight number, the exit 
used and the meteorological information 
(visibility, cloud ceiling, wind speed and 
direction and dry or wet runway) were recorded.  

On a first stage (1000 flights), all arrivals 
were recorded. Then the sample was analysed 
so that representative models with less available 
data were identified. From this point on, the 
survey hours were selected according to the 
scheduling hours of these models. The survey 
was completed when 1500 data were recorded. 
No landing on wet runway was recorded. 
Neither light traffic, as Barajas is closed to 
General Aviation and Business aircraft [4]. 

As cited before, the overall sampling error 
was 0.4 seconds with a significance level of 
95%. 

Sample 
size 

Mean 
ROTA 

Standard 
deviation 

ROTA 

Sampling 
error 

ROTA 

1500 46.5 s 7.9 s ±0.4 s 

Table 1.  Summary statistics of the data 
sample (significance level 95%) 

Data post processing 
A first post-process allowed to complete 

the required information for each flight: airline, 
aircraft model, origin airport and stand. The 
actual landing weight was approximated by a 
categorical variable based on the duration of the 
flight and the number of passengers. The 
postprocess also allowed to estimate the 
touchdown distance to threshold by 
interpolating between the distances of the points 
immediately before and after the touchdown 
(sorted by time). 

In parallel, a complete database with the 
performance and dimensions of the most 
representative models was generated (136 
records), as well as a complete list of 2655 
aircraft designators with their equivalent aircraft 
performance. 

Finally a complete table was produced 
with the flight information (airline, origin, 
stand), the aircraft characteristics (model, 
weights, reference speed, dimensions), the 
meteorological data (tailwind and crosswind 
speeds, visibility, cloud ceiling and runway 
condition (dry or wet)) and the runway 
performance (overall ROTA, intermediate 
times, location and type (rapid or right-angle 
exit) of the exit taxiway and average speeds 
along the runway). 

Statistical analysis 
The objective of the statistical analysis was 

to identify the main factors affecting the runway 
performance and the relationship between them. 
Analysis of variance tests (ANOVA) were 
carried out to check whether the differences 
between the populations means were significant. 

Prior to the ANOVA tests, outliers (points 
more than three inter-quartile ranges below the 
first quartile or above the third quartile) were 
identified and eliminated from the sample (19 
records). 

The available factors can be grouped in: 
kinematic factors, aircraft performances and 
runway and environmental characteristics. 

Table 7 shows the dependencies between 
the factors analysed. 

Discussion of the dependency between 
factors 

Kinematic factors 
They represent the output variables to be 

modelled: 

 

Variable Description 

VTHR Speed over threshold (ground 
speed) 

VEAS Equivalent air speed over threshold 

VCOASTING Average speed in the last link 
before the exit taxiway. 

VEXIT Turn off speed 
aMEAN Mean deceleration 
aEXIT Deceleration during turn off 

XTD Distance from threshold to 
touchdown 

XEXIT Distance to exit taxiway 
ROTA Runway occupancy time 

ΦEXIT 
Type (Angle) of the exit taxiway. 
Rapid exit (30º) or Right-angle 
(90º). 

Table 2.  Kinematic variables 
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According to the ANOVA, VTHR affects 
both XTD and XEXIT. It is logical since the faster 
over threshold, the longer distance is required to 
decelerate. Besides, pilots may use flare to 
control the speed, shortening or lengthening the 
touchdown [5]. 

On the other hand, VEAS only affects VTHR 
as the latter is the translation to ground speed of 
the former. This seems counterintuitive, but it is 
due to the effect of the wind. Given two aircraft 
with similar VEAS, but different wind conditions, 
they will land with different VTHR which, as 
seen before, may lead to different landing 
distances and ROTs. 

XTD only affects VTHR. There is no 
relationship with decelerations, ROT or XEXIT, 
which may be explained by the aforesaid speed 
control during flare. 

The exit used has been grouped in acute-
angle exits or rapid exit taxiways (RET) and 
right-angle exits. As expected, the landing 
distance depends on the rest of the factors, 
excepting VEXIT when vacating by right-angle 
exits. That means that aircraft vacating by a 
right-angle exit have previously reduced their 
speed down to similar (low) values, 
independently of the selected exit. 

Aircraft performances 
Aircraft characteristic as defined by 

constructor: 

Variable Description 

IDPERF Categorical variable representing 
the equivalent performance model 

VREF Reference approach speed 
1.3·VSTALL(Indicated airspeed) 

MLW Maximum Landing Weight 
LD Landing distance to full stop 

Table 3.  Performances variables 

As expected, ANOVA shows a clear 
dependency between aircraft performances and 
output variables. 

Runway and environmental 
characteristics 

The runway and environmental 
characteristic analysed are: 

Variable Description 
Fv Dimensionless speed: VEAS /VREF 
VTAILWIND Tail wind component of the speed 
FW Dimensionless weight: LW / MLW 

STAND 
Categorical variable representing 
the apron area where the stand is 
located 

IDPERF Categorical variable representing 
the equivalent performance model 

AIRLINE Categorical variable that 

identifies airlines Spanish (familiar 
with the airport) and foreign airlines 
(more likely unfamiliar). 

Table 4.  Runway variables 

Fv affects ROTA, XEXIT and ΦEXIT through 
VTHR. 

Wind affects all the kinematic variables 
except ROTA, ΦEXIT and aMEAN. That is, 
VTAILWIND has an impact on landing distance, 
but not on the overall ROTA, as also found in 
[6]. This seems to confirm that the landing 
distance depends on the ground speed over 
threshold.  

Weight affects all the variables except 
ΦEXIT and aEXIT. It seems logical that weight 
affects the speed profile along the runway, but 
not necessarily the type of exit used. But it also 
shows that pilots applies different deceleration 
rates and adjust VEXIT and aEXIT, once an exit is 
selected. 

The analysis of the airline and stand 
factors confirms that, as initially suspected, the 
familiarity with the airport and the stand 
location may impose conditions on the pilot's 
decisions. 

Outcomes 
The goal of the statistical analysis was to 

identify the variables that should be taken into 
account to model the runway occupancy time 
(ROTA) and the exit taxiway selection (XEXIT, 
ΦEXIT): Aircraft characteristic and performances, 
FV, Wind, deceleration, FW, Stand location and 
familiarity with the airport. 

Some qualitative conclusions were: 

· Wind does affect the landing distance, 
but not ROTA directly. Therefore, a better 
variable to model speed over threshold should 
be FV. On the contrary, VTAILWIND has an impact 
on the exit taxiway selection. 

· Touchdown distance depends on pilot 
techniques and familiarity with the layout, but 
has not a significant impact on ROTA. 

· Pilots adjust the speed profile when 
vacating by a given exit. Therefore deceleration 
rate and VEXIT depend on the exit location.  

· Pilot's overall behaviour are affected by 
other operational factors such as the familiarity 
with the airport and the stand location. 
Therefore, clear indication on exit locations and 
design is a key factor to enhance the runway 
performance, as stated in [1] and [10]. 
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· As a consequence of the non-linearity 
of inputs (kinematic variables) and outputs (turn 
off distances and ROTs) symmetry is broken, 
what leads to non-correspondent values for 
mode inputs (even with multimode output 
distributions) and unexpected behaviours 
(ROTA outliers). 

For example Figure 3 shows the box-and-
whisker plot of ROTA and VEAS. It can be 
observed that meanwhile the speed distribution 
is clearly symmetric (standard skewness -
0.999), the ROTA distribution has a clear upper 
tail (standard skewness 12.849).  

Figure 3.  Comparison of ROTA and VEAS 
distributions 

Experimental model design 

Model Overview 
The conclusions of the statistical analysis 

confirm that a stochastic approach should be 
preferred to a deterministic one. Considering the 
probabilistic distributions of both input and 
output data allows to assess the deviations from 
the expected or most common behaviours, 
enhancing the robustness of the outputs. 

A usual way of dealing with stochastic 
models is using Montecarlo methods. The 
overall method can be summarised as: 

1) To build the algorithm: actual data 
sample is analysed so as to construct an 
algorithm to estimate both the ROTA and the 
exit usage. 

2) To model the input variables: input 
variables are identified and fitted to 
probabilistic distributions in accordance with 
actual data sample. 

3) To run the simulations: the model 
generates pseudo-random numbers by 
simulation techniques to mimic the statistical 
distribution of the input variables. Then, it 
obtains the correspondent output variables by 
computing the algorithm. After a sufficient 
number of replications, the sampling results  
will reproduce the distribution of the statistic 
outputs. 

Simplifications 
One of the most important user 

requirements in the design of the model was the 
simplicity of the user-inputs. Therefore, some 
simplifications were required. Some of the 
influence variables identified in the survey were 
not finally included in the model, due to the 
difficulty to estimate them in a generic scenario: 

· FW (Weight factor): which depends on 
the origin of the traffic. 

· Airline Factor: which depends on the 
familiarity of the pilots with the airport layout. 

· Wind: whether no wind information is 
available, clam wind conditions will be 
supposed. 

Aircraft classification 
To estimate the distribution of the 

kinematic variables for each aircraft type a 
significant amount of data is required. Thereby, 
records from the Barajas survey were grouped 
in clusters with similar aircraft characteristics 
and runway performance. 

Instead of using directly the usual 
classifications according to VAPP (A-D) or wake 
vortex category (H, M, Lt), a cluster analysis 
was performed using the K-Means method1. 

Several clustering were performed trying 
with different numbers of clusters (from 4 to 8). 
The final number of clusters (7) was obtained as 
a trade-off between the uniformity of the aircraft 
within each cluster and the amount of data 
available in each cluster.  

The aircraft model distribution within each 
cluster was analysed (Table 5). It was observed 
that the clusters were conformed not only 
around the wake vortex category (MTOW 
criteria) and the threshold speed, but they also 
fitted reasonably well with the constructor 
(Table 6). 
Cluster H X M A B O T 

#1 0% 0% 28% 27% 44% 1% 0% 
#2 100% 0% 0% 0% 0% 0% 0% 
#3 0% 0% 0% 0% 1% 75% 24%
#4 21% 62% 0% 7% 10% 0% 0% 
#5 0% 0% 0% 1% 0% 10% 89%
#6 0% 0% 34% 17% 47% 1% 0% 
#7 12% 12% 19% 25% 28% 4% 0% 

Table 5.  Percentage of aircraft type within 
each cluster 

                                                           
1 The K-Means method is a non-hierarchical method; 
each cluster begins with a specified number of 
groups, each of which has a single random point. A 
sequence of points is sampled, and each point is 
added, in turn, to the group whose mean it is closest 
to. The group mean is then adjusted. 



- 6 - 
 

Then for simplification and based on the 
distribution of traffic within each cluster, an 
alternative classification was adopted, attending 
ICAO wake vortex category, engine type and 
constructor. 

Aircraft Group Acronym 
Heavy H 
B757 X 
MD80s series (Medium Jet) M 
Airbus Medium Jet A 
Boeing Medium Jet B 
Other Medium Jet O 
Medium Turboprop T 
Light Lt 

Table 6.  Aircraft group 

Light traffic, although not present in the 
survey, was included as a different group apart 
from the rest. 

Logic of the model 
In order to simplify the problem, the 

runway performance model is split in two 
complementary models:  

1) a model to estimate the accumulated 
probability of using each exit taxiway and  

2) a kinematic model based on 
dimensionless distance variable which estimates 
V(ξ) for each type of exit (right-angle, RET) 
and aircraft group, where 

EXITXξ x= . 

By doing this, a more simple approach of 
the kinematic profile along the runway can be 
achieved, reducing the influence of the exit 
location in the speed function along the runway. 

Figure 4 shows the overall logic of the 
model. As stated before, the model applies 
Montecarlo methods so as to obtain the ROTA 
and exit taxiway.  

For a given aircraft and given 
meteorological conditions, the model randomly 
assigns the runway exit and the kinematic 
variables according to the correspondent 
probability distributions of the aircraft's group. 
Then ROTA is calculated by numerical 
integration of the speed function. 

The model includes a final check, so that 
excessive decelerations are prohibited (namely, 
2 m/s2 on dry runway and 1.5 m/s2 on wet 
runway) [7] [8]. When an acceptable 
deceleration is not possible after several 
iterations, the model tries with the next 
available exit. 

To obtain statistically significant results on 
ROTA a sufficient number of flights must be 
simulated. The higher the number, the better the 
simulated output distribution fits with the actual 
distribution. The minimum number varies in 

each case, depending on the desired precision 
(admissible error: e, z-score for the given 
significance level α: Zα ) and the ROTA 
distribution (standard deviation of the output: 
σ). 

Figure 4.  Model overview 

For example, in a typical scenario with 
ROTA mean 60 seconds and standard deviation 
10 seconds, the minimum number of 
replications should be 2,189, provided 
admissible error of 1% and a significance level 
of 99.5%2.  

Turn-off distance probability model 
The probability density function of the 

exits can be computed as the difference between 
the accumulated probabilities of the precedent 
and the given exit. By using the cumulative 
distribution function (CDF), instead of the 
density function, different airport layouts can be 
compared, regardless the number and location 
of their exit taxiways. 

Empirical CDF can be found in [10] and 
[11]. Although they provide a good guidance on 
runway exit  usage for different aircraft groups, 
they lack to take into account important factors, 

                                                           
2 Note that this would also be the minimum sample 
size required to obtain a similar sampling error. 
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such as elevation or temperature ([11]) or right-
angle exits ([10]). 

The proposed model is based on an 
Estimated Logistic regression model (obtained 
by the Maximum likelihood method) of actual 
exit taxiway usage. Statistics of the Spanish 
airports was compiled from [9]. It comprises 23 
different airports and more than 22.000 landing 
operations. 

The Estimated Logistic regression fits a 
response of observed proportions or 
probabilities at each level of an independent 
variable. The response function is a non-linear 
S-shaped curve with asymptotes at 0 and 1. The 
dependent variable must have values greater 
than 0 and less than 1. The model is defined by 
the equation: 

 

Figure 5.  Example of the Estimated Logistic 
regression 

An initial comprehensive set of parameters 
was included in the model accounting for 
geometrical (runway length, exit location and 
geometry, number of exit, apron relative 
location, slope, etc.) and meteorological factors 
(elevation, temperature, mean tailwind speed). 

The model was simplified removing the 
variables with highest p-value until the highest 
order term was statistically significant. The 
adjusted percentage of deviance explained by 
the model (R2) for the different aircraft groups 
was higher than 0.9 for each of them. 

In order to ensure the operational validity 
of the output, the value obtained from the 
regression is corrected by some heuristics. For 
example, the accumulated probability of the last 
exit shall always be 1, the probability of using a 
given exit by bigger aircraft will be as high as 
for the smaller ones (i.e., smaller aircraft will 
likely vacate before the bigger ones), and so on. 

Runway speed profile model 
The objective is to model the landing 

speed function along the runway from the 
threshold to a given exit taxiway for each 
aircraft group. 

A first attempt was made assuming 
constant deceleration (a): 

( )
2

2
1 tatVx

taVxV

THR

THR
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Where the exit speed by a given exit 
distance (XEXIT) is 

EXITTHREXIT XaVV ⋅⋅−= 22  

This option is logical as the calculation of 
the coefficients from survey data is very simple 
and it is the most common assumption in ROTA 
estimations [7]. The coefficients, initial speed 
(VTHR) and deceleration rate (a), are obtained by 
a linear least squares regression of the Distance-
Time paired data from the survey. 

Even though the regressions provide 
extremely good adjustments of distance and 
time (R2~0.9) the resulting speed functions are 
not satisfactory. Constant deceleration imposes 
braking action earlier than normal in real 
operation and speeds over threshold much 
higher than observed.  

The same conclusions can also be found in 
[8], where an alternative non-linear speed 
function was proposed: 

ξ)K(1
EXITTHRTHR eξ)V(VVV −−⋅⋅−−=  

where 
EXITXξ x=  is a dimensionless 

distance variable. 

The idea behind this function is to 
decelerate less initially and more later. Pilots 
may follow the non-linear profiles as heavier 
deceleration is delayed [8]. 

Figure 6 shows the comparison of an 
example of the non-linear and the constant 
deceleration functions adjusted to an actual 
flight from the Barajas survey. The different 
deceleration rate, specially during flare, can be 
observed. In the example, the constant 
deceleration model imposes reductions of speed 
of more than double a conservative value of 
5Kt, suggested in [7]. 

In consequence, the estimated ROTA 
based on the constant deceleration model is in 
general too optimistic. In the example the 
adjusted model for a flight from the Barajas 
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survey yields a ROTA of 36.9 seconds, versus 
an actual ROTA of 38.3 seconds (-3.6%). 

Figure 6.  Comparison of an example of 
the non-linear speed and the constant 

deceleration functions 

On the contrary, the non-linear model fits 
better the usual aircraft landing performances 
and thus provides a better adjustment of ROTA. 
In the example, the estimation of ROTA 
matches the actual ROTA. 

Figure 7.  Speed coefficients estimation 
process  

The adjustment of the non-linear function 
depends on three parameters: initial speed 
(VTHR), vacating speed (VEXIT) and a 
deceleration constant (K), which actually 
controls the delay in the beginning of the 
braking [8]. 

Intermediate speed versus dimensionless 
distance records from Barajas survey were 

adjusted to this non-linear function. Figure 7 
shows the process followed for each flight. 

The method consisted on the iterative 
estimation of the parameters, by minimising the 
sum of squares of the residuals while ensuring 
that estimated ROTA matches the actual one. 
An initial value of FV=1 was used and then a 
least square regression of the linearised speed 
function was obtained. The parameters of the 
function (VTHR, VEXIT and K) could be then 
calculated for the given FV. When the estimated 
ROTA did not match actual ROTA a higher FV 
was tested.  

FV was used instead of directly the initial 
ground speed because, as stated in the outcomes 
of the statistical analysis of the survey, FV is 
more significant to landing performance (ROTA 
and XEXIT) than VTHR (ground speed).  

The last step was to fit the resulting 
distributions of the parameters (FV, VEXIT and 
K) to probabilistic distributions to be used in the 
stochastic model. 

Standard distributions were tested (namely 
Normal, Erlang, Lognormal, Weibull, Uniform, 
Gamma and Poisson) and selected according to 
a series of goodness-of-fit tests and p-values 
based on the empirical distribution function 
(EDF)3. When neither of the standard 
distributions fitted the empirical sample, a set of 
Johnson curves were tested4.  

The advantage of this approach is that 
once a particular Johnson curve has been fit, the 
Normal distribution can be used to obtain the 
pseudo-random numbers instead of working 
with an empirical distribution. Methods for 
fitting Johnson curves, so as to approximate the 
first four moments of an empirical distribution, 
are described in detail in [15], and [16]. 

Finally, the independence of the resulting 
distributions (Fv, VEXIT, K) for each type of exit 
and aircraft group was checked. Their 
independence allows the model, during 
Montecarlo simulation, to randomly select each 
of these variables regardless the others (Figure 
4). 

                                                           
3 The EDF tests (Kolmogorov-Smirnov, Chi-Square, 
and Anderson-Darling) are based on various 
measures of discrepancy between the empirical 
distribution function and the cumulative distribution 
function based on the specified distribution. 
4 Johnson Curves. Johnson (1949) described a system 
of frequency curves that represents transformations of 
the standard normal curve (see [15], for details). By 
applying these transformations to a standard normal 
variable, a wide variety of non-normal distributions 
can be approximated, including distributions that are 
bounded on either one or both sides (e.g., U- shaped 
distributions). 
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Validation of the model 

Validation process 
The objective of the validation was to 

verify the fulfilment of all the requirements, so 
that the tool complied user needs. 

The validation fell within the Functionality 
Testing category. It verified whether the 
functionality defined in the System Requirement 
Analysis Report were available. From this point 
of view, the system was like a black box. No 
knowledge about the internal structure of the 
system was needed. The tests were based on the 
expected requirements and the inputs/outputs of 
the tool. 

The validation tests were carried out by the 
“user”, based on actual data and in the usual 
working environment, that is, with the software, 
hardware and users which the tool has been 
designed for. In this case, the “user” was a task 
group, apart from the design team, formed 'ad 
hoc' within INECO to perform the tests. 5 

Output requirements 
The validation of output requirements 

consisted on a test battery comprising different 
reference scenarios. Some quantitative 
indicators obtained from PROESTOP were 
compared with those obtained from actual 
operational data and REDIM tool [14]. The 
objective was to bound the level of reliability of 
the outputs. 

Performance benchmark 
The chosen performance benchmark 

indicators were: 

· Exit Taxiways Usage Percentage. The 
p-value of the Chi-Square test was chosen as the 
performance benchmark indicator for this 
parameter. Particularly, the significance of the 
deviations from the sample p% is used, where 
the expected value (ej) comes from the actual 
data. The benchmark yields between 0% and 
100%, where 0% means a complete 
coincidence. 

∑
=

−
=

K

j j

jj

e
eo

1

2
2 )(

χ  

                                                           
5 Prior to the validation, a similar process 

to the described here was specifically performed 
to model the light traffic. So validation outputs 
presented here, includes the light traffic [13]. 

 

· Mean Runway Occupancy Time. The 
relative error is used as the performance 
benchmark indicator for this parameter. 

Test-bed airports 
Five Test-Bed Airports were selected so as 

to include the most representative typologies: 
three or more RETs, 1 RET, no RET, no 
Parallel taxiway. 

By doing this, PROESTOP was tested under 
different physical and traffic conditions. A 
complete summary of results can be found in 
Table 8. 

Validation outcomes 
The main validation outcome was the 

acceptable validity of estimations: Less than 5% 
error in overall mean ROTA and no significant 
differences in exits usage (95% confidence). 

When actual data sample has a low 
statistical significance (small sample and/or a 
high deviation), PROESTOP estimation is even 
within the confidence interval of the sample 
mean. On the contrary, estimates by REDIM are 
too low. As observed in [9], although the model 
has been validated in the USA, its assumptions 
seem optimistic for European airports. 

The runway occupancy time 
estimator tool (PROESTOP) 

Parallel to the construction of the 
algorithm, a user's software interface for 
Windows platforms was developed to enable a 
flexible and friendly use of the algorithm, and a 
straightforward integration with other tools 
thanks to its modular architecture and the 
extensive use of standard formats (txt, mdb, 
html and xml format files). 

The current release (v4.0) provides 
estimates of runway occupancy time statistics 
and optimal proposals for the allocation of new 
exit taxiways given the runway layout, the fleet 
and the meteorological conditions. It includes 
several enhancements including the estimation 
of runway occupancy times on departure 
(ROTD), and the validation of results for wet 
runways. 

To date, PROESTOP has been used in the 
development and revision of ten Spanish 
airports master plans and has been successfully 
integrated in the Supporting Platform for 
Airport Decision-Making and Efficiency 
Analysis project (SPADE) within the VI EU 
Framework Programme [12]. 

Recently, the Airports & Environment 
Management Business Division (DAS/AEM) of 
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Eurocontrol has acquired a license of 
PROESTOP 4.0 to support its studies. 

Conclusions 
The statistical analysis has confirmed the 

need of an stochastic approach for modelling 
runway performance. The variability of input 
and output data affects the robustness of the 
conclusions extracted from the model, when 
evaluating the existing infrastructures or 
proposing new exit allocations. 

Furthermore, validation has proved that 
proESTOP is a valid tool for a cost-effective 
estimate of the ROT in those scenarios when the 
required accuracy is within the margin of error 
provided by the tool. For example, in those 
cases where ROT is not the most limiting factor 
to establish separations, where the sampling 
error is likely to be high (because an insufficient 
sample is expected due to budget or time 
limitations - e.g. low demanded airports), or 
simply because data sampling is not feasible at 
all (what-if analysis).  
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Appendix 
 Variable 

 ROTA XEXIT ΦEXIT VTHR VCOASTING VEXIT aMEAN aEXIT XTD 

Factor          

VREF <0.0001 <0.0001 0.0004 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

MLW <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

LD <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

IDPERF <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
          

VTAILWIND 0.1740 0.0044 0.1979 <0.0001 0.0047 0.0003 0.2264 0.0401 0.0608 

FW <0.0001 <0.0001 0.9789 <0.0001 <0.0001 0.0002 <0.0001 0.1345 <0.0001 

STAND <0.0001 <0.0001 <0.0001 <0.0001 0.0178 0.0096 0.1136 <0.0001 0.9260 

AIRLINE <0.0001 0.0441 <0.0001 0.0041 0.0129 <0.0001 0.2095 <0.0001 0.0025 

Fv <0.0001 0.0001 <0.0001 <0.0001 0.0736 0.0584 0.1261 0.0592 0.4213 
          

VEAS 0.8717 0.1459 0.9876 <0.0001 0.2031 0.3644 0.1823 0.5013 0.7073 

VTHR 0.9788 <0.0001 0.0695 N/A 0.9362 0.1317 0.9442 0.9944 0.0315 

XTD 0.8581 0.1790 0.4990 0.0064 0.2849 0.4471 0.0085 0.7310 N/A 

XEXIT 30º <0.0001 N/A <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

XEXIT 90º 0.0002 N/A <0.0001 <0.0001 <0.0001 0.4362 0.0213 0.0215 0.0418 

ΦEXIT <0.0001 <0.0001 N/A 0.0002 0.1532 0.0007 0.0004 <0.0001 <0.0001 

Table 7.  Dependency between factors6 
Test bed 
runway Elevation Exit 

taxiways Parameter Indicator Data 
sampling PROESTOP REDIM 

Exits use p-value -- 1.6% 100.0% 
Mean 53.9 s 54.9 s 52.0 s Barajas 

33 610 m 
3 rapid exits 
3 right-angle 

exits ROTA 
Error 0.5% -1.9% 3.6% 

Exits use p-value -- 2.5% 3.2% 
Mean 62.9 s 61.7 s 52.0 s Malaga 

14 16 m 2 rapid exits 
ROTA 

Error 3.4% 1.9% 17.4% 
Exits use p-value -- 2.6% 0.9% 

Mean 63.6 s 64.2 s 61.3 s Ibiza 06 7 m 1 rapid exit 
ROTA 

Error 3.4% -0.9% 3.6% 
Exits use p-value -- 1.3% 7.6% 

Mean 68.7 s 66.1 s 64.8 s Menorca 
19 91 m right-angle 

exits ROTA 
Error 3.1% 3.8% 5.6% 
Mean 145.8 s 141.6 s -- 

Jerez 21 25 m 
Apron access 
No parallel 

taxiway 
ROTA 

Error 12.3% 2.9% -- 

Table 8.  Summary of Validation results at test-bed airports 

 

                                                           
6 In those cases where the p-value of the F-test is less than 0.05, there is a statistically significant difference between 
the mean of the variable (column) from one level of the factor (row) to another at the 95.0% confidence level. 


