
SCENARIO-FREE SEQUENTIAL DECISION MODEL FOR THE
SINGLE AIRPORT GROUND HOLDING PROBLEM
Pei-chen Barry Liu, Mark Hansen, University of California, Berkeley, CA

Abstract
This paper aims to advance the support of

decision-making in air traffic flow management
under uncertainty with a focus on the single airport
ground holding problem (SAGHP). Learning from
the shortcomings of the scenario-based models for
SAGHP that address uncertainty using probabilistic
capacity scenarios, we develop a sequential
decision model that is not limited by a small set of
scenarios. We present computational strategies and
demonstrate the computational feasibility of the
model.

Introduction
Ground Delay Programs (GDPs) mitigate

destination airport capacity-demand imbalances by
assigning ground delays to flights at their origin
airports. The ground-holding problem (GHP) is that
of ground-holding flights to minimize the overall
cost of ground and airborne delays. The ground-
holding problem for a single destination airport is
termed the Single Airport Ground Holding Problem
(SAGHP). The SAGHP has been modeled using
scenario-based stochastic programming models in
several studies [1][2][3]. In this context, a scenario
is a representative time series of arrival capacity
values for an airport over a day or some part of a
day, as illustrated in Figure 1.

One of the primary shortcomings of the
scenario-based models is that they assume a limited
number of capacity scenarios when in reality there
is a much larger set of possibilities for capacity
evolution. The number of scenarios is limited by
model solver capacity and data availability. In
addition, scenario-tree-based models impose a
scenario tree structure when in reality improved
information about future capacity is obtained
continually rather than at a few discrete branching
points. On the implementation side, a previous
empirical study [4] has shown that the costs
incurred from applying the output of scenario-based
optimization models to airports is considerably
higher than the theoretical optimization results
suggest. The reasons for this discrepancy include a)
the actual capacities vary around the nominal
values assumed in the optimization; b) there is
uncertainty in correctly identifying the scenario that
matches best with the condition as more
information of the capacity evolution is obtained
over time. Hence, in this paper, we consider a

“scenario-free” sequential decision making model
to avoid these inadequacies.

The use of dynamic programs for the GHP
was explored by Andreatta and Romanin-Jacur [5]
for a simplified single-time period SAGHP and
Terrab and Odoni [6] for SAGHP with multiple
time periods. Terrab and Odoni formulated a
dynamic program based on the assumption that a
fixed landing priority rule has been specified for the
flights, and solved for ground-holds for each
individual flight. The stochasticity in the problem
was accounted for using a set of capacity scenarios.
However, their model is a static one, since it does
not allow for recourse actions. Since then, the use
of dynamic programming for the SAGHP has
received little attention because of concerns about
the curse of dimensionality. A decade after the
initial attempt of using dynamic programs to solve
SAGHP, we investigate the applicability of a true
“dynamic” program for SAGHP in light of the
limitations of the scenario-based stochastic
programs, and ever-increasing computing power.

0

2

4

6

8

10

12

14

16

8:00-
8:15

8:15-
8:30

8:30-
8:45

8:45-
9:00

9:00-
9:15

9:15-
9:30

9:30-
9:45

9:45-
10:00

10:00-
10:15

10:15-
10:30

Time Periods (in a.m.)

A
rr

iv
al

 C
ap

ac
ity

 (#
 a

llo
w

ed
 fo

r l
an

di
ng

pe

r q
ua

rt
er

 h
ou

r)

Scenario 1

Scenario 2

Scenario 3

Figure 1. Illustration of Capacity Scenarios

Sequential Decision Model for
SAGHP

The process of making ground-holding
decisions in a SAGHP can naturally be described as
sequential decision making. The ground holding
decisions are responses to the capacity uncertainties
at the destination airport, and we want to react
optimally to the most updated information. We
formulate this sequential decision making model
using a dynamic program. In this model, the states
we react to are the arrival capacity levels at the
destination airport; the actions (or decision
variables) are the flights to hold on the ground at

 - 1 -

each decision period; the objective function is to
minimize total expected delay cost; and the optimal
policies are the actions to take at any state-action
trajectory. We assume the availability of transition
probability matrices of airport arrival capacities at
each time period. We also assume that both the
queue on the ground and the queue in the air will
clear at the end of the planning horizon. As such, no
delay cost would be incurred after the planning
horizon. We introduce the following notations:

F = the set of all the flights considered in the
planning horizon.

T = the last time period in the planning horizon.

.,
otherwise0

 period during ground on the stays flight if1
tf

tf
X t

f ∀∀
⎩
⎨
⎧

=

.,
otherwise0

in arrive tomodel by the planned is flight if1
tf

tf
Y t

f ∀∀
⎩
⎨
⎧

=

.,
otherwise1

 beforeor in depart toscheduled is flight if0
tf

tf
S t

f ∀∀
⎩
⎨
⎧

=

τf = the duration of flight of flight f.

At = the number of flights planned by the model to
arrive in time period t.

Lt = number of flights intending to land at time t.

Wt = number of flights experiencing airborne delay
at time t.

Kt = arrival capacity at the destination airport at
time t.

Kmax(t) = maximum arrival capacity at the
destination airport at time t.

Kmin(t) = minimum arrival capacity at the
destination airport at time t.

Pkk’ = transition probability from arrival capacity k
to k’ in the next period.

cg = cost of ground delay for one time period per
flight.

ca = cost of airborne delay for one time period per
flight.

Among the above notations, only is a

decision variable. and τ

t
fX

t
fS f are given from the

flight schedule and it is assumed that the duration
of flight is deterministic. and At

fY t are auxiliary
variables to help describe the dynamics. The
optimality equation can be stated using the notation
defined above as:

⎭
⎬
⎫

⎩
⎨
⎧

⋅++−= ++

+

+=∈∈
∑∑

+

+
)()(min)(11

)1(

)1(,

max

min1

1 tt

tK

tKK
KKta

Ff

t
f

t
fg

FfX
tt KfPWcSXcKf

t

ttt
f

for (1a) 11 −≤≤ Tt

s.t.

1,,0,11 −=∈∀−= +++ TtFfXXY t
f

t
f

t
f

f K
τ ; (1b)

TtYA
Ff

t
ft ,,0 K== ∑

∈

; (1c)

0;,,1)(0 ==−= + WTtKLW ttt K ; (1d)

TtWAL ttt ,,11 K=+= − ; (1e)

TtFfSX t
f

t
f ,,0, K=∈∀≥ ; (1f)

1,,0,1 −=∈∀≥ + TtFfXX t
f

t
f K ; (1g)

TtFfYX t
f

t
f ,,0,}1,0{},1,0{ K=∈∀∈∈ ; (1h)

and TaTT WcKf =)(. (1i)

When the difference equals to one,
the flight f experiences ground holding during
period t. Therefore, the number of flights to hold in
period t is the sum of such differences over all the
flights. Constraint set (1b) ties the planned arrival
time of flight (t + 1 + τ

t
f

t
f SX −

f) to its departure time (t + 1)
and its duration (τf) through the auxiliary
variable . Equation set (1c) calculates the number
of flights planned to arrive in time t, A

t
fY

t. Constraint
set (1e) states that the number of flights desiring to
land in period t includes those planned to arrive in
period t and those queued in the air in period t – 1.
Constraint set (1f) ensures that a flight does not
take off until its scheduled departure time.

 In this formulation, the total delay cost is
optimized on the basis of ground holding decisions
for each individual flight. Clearly, the action space
(to hold or not to hold each flight) is combinatorial
with worst case of 2|F| per period and the
computation is likely to be intractable. The
computational load can be greatly reduced when we
consider flights in groups classified by flight
durations. When a group of flights of the same
duration are candidates for release in a given
period, it is clear that the objective function
depends only on the number of flights from this
group to release, not on which individuals to
release. We thus reformulate the problem by
grouping the flights in F according to their
durations. We introduce the following notations for
the reformulation.

Γ = the set of groups that represent the
classification of flights.

tZγ
= number of group γ flights to hold on the

ground in time period t.

t
γξ = number of group γ flights planned by the model

to arrive in time period t.

 - 2 -

tSγ
= number of group γ flights scheduled for

departure at time t.
tGγ
= number of group γ flights queued on ground

from previous periods by time t.

The reformulated optimality equation can be
expressed as:

⎭
⎬
⎫

⎩
⎨
⎧

⋅++= ++

+

+=Γ∈
Γ∈

+≤≤
∑∑

+

+
)(min)(11

)1(

)1(0

max

min1

1 tt

tK

tKK
KKta

t
g

SGZ
tt KfPWcZcKf

t

ttttt
γ

γ

γ
γγγ

for (2a) 11 −≤≤ Tt

s.t.

Γ∈∀==Γ∈∀= − γγ γγγ ,0;,,1, 01 GTtZG tt K ; (2b)

1,,0, −=Γ∈∀−+=+ TtZSG tttt
Kγξ γγγ

τ
γ

γ ; (2c)

TtA t
t ,,1K== ∑

Γ∈γ
γξ ; (2d)

0;,,1)(0 ==−= + WTtKLW ttt K ; (2e)

TtWAL ttt ,,11 K=+= −
; (2f)

1,,0, −=Γ∈∀Ζ∈ + TtZ t Kγγ
; (2g)

and . (2h) TaTT WcKf =)(

In the optimality equation (2a), the decision
variable is the number of flights to hold for each
duration group γ in time period t, . Constraint set
(2b) associates the action in period t – 1 to its
implication for the queue on the ground in period t.
Constraint set (2c) links the departure and planned
arrival of flights with their flight durations.
Constraint set (2d) calculates the number of flights
planned to land in time t, A

tZγ

t, by summing over the
number of flights planned to land in period t from
all the duration groups.

The computational advantage of the
reformulation can be illustrated using a simple
example. Consider nine flights waiting for
departure in the current time period. Suppose these
nine flights belong to three groups of sizes two,
three, and four. Using formulation (1a), there are
512 (29) candidate holding action combinations to
evaluate. When solving for the number of flights to
hold per group as in formulation (2a), only 60 (3 ×
4 × 5) action combinations need to be evaluated.
The model (2a) reduces the action space
significantly; at the same time, the model yields the
same optimal policy.

 Before we discuss the mathematical
properties of the model, let us consider a simple
numerical example and illustrate the mechanics of
the decision process. Figure 2 depicts the
Sequential Decision Model (SDM) for a very

simple SAGHP. In this example, there is one flight
scheduled to depart at time 0 with flight duration of
one time period. Destination capacity levels are 0
and 1 with a stationary transition probability matrix

of . The capacity in the initial period is 0.

Unit delay costs are c

10

7.03.0
3.07.0

1
0

⎥
⎦

⎤
⎢
⎣

⎡

g = 1 and ca = 3. There is a
planning horizon of two periods, and it is
guaranteed that the flight can land in the third
period. The decision process is described by an
acyclic directed graph with two types of nodes:
decision nodes and action nodes. We refer to such a
graph as an SDM tree. The decision node with
capacity level k at decision period t is marked by
“Kt = k.” The action node with the number of
flights to hold h at decision period t is marked by
“Ht = h.” The associated number of flights in the
ground queue Gt and number of flights in the
airborne queue Wt are listed next to each of the
nodes. Also listed are the costs evaluated at each
step. At a decision node, the decision maker selects
the least costly admissible action. The value of the
least-cost action chosen, ft*(Kt), is the cost
associated with this decision node at period t with
capacity level Kt. At an action node, the decision
maker evaluates the expected cost-to-go of taking
this particular action. The expected cost-to-go
associated with each actions is listed as “V = cost.”
In this example, the optimal policy is to hold the
flight at period 0. As this example illustrates that
there are quite a few calculations required even for
a very small problem, this suggests that the
dimension of the SDM tree could be huge for
problems with realistic size.

K0 = 0

H0 = 1

H0 = 0

K1 = 0

K1 = 1

K1 = 0

K1 = 1 H1 = 0

H1 = 0

H1 = 1

H1 = 0

H1 = 1

H1 = 0

K2 = 0

K2 = 1

K2 = 0

K2 = 1

K2 = 0

K2 = 1

K2 = 0

K2 = 1

K2 = 0

K2 = 1

K2 = 0

K2 = 1

G0 = 1, W0 = 0

G0 = 0, W0 = 0

G0 = 1, W0 = 0

G1 = 0, W1 = 1

G1 = 0, W1 = 0 G1 = 0, W1 = 0

G2 = 0, W2 = 0

G2 = 0, W2 = 0

G1 = 0, W1 = 1

G2 = 0, W2 = 1

G2 = 0, W2 = 0

G1 = 1, W1 = 0

G1 = 1, W1 = 0

G1 = 0, W1 = 0

G1 = 1, W1 = 0

G1 = 0, W1 = 0

G1 = 1, W1 = 0

G2 = 0, W2 = 1

G2 = 0, W2 = 0

G2 = 0, W2 = 0

G2 = 0, W2 = 0

G2 = 0, W2 = 1

G2 = 0, W2 = 0

G2 = 0, W2 = 0

G2 = 0, W2 = 0

0.7

0.3
0.3

0.7

0.3

0.7

0.3

0.7

0.7

0.7

0.7

0.7

0.3

0.3

0.3

0.3

f2(0) = 3

f2(1) = 0

f2(1) = 0

f2(0) = 0

f2(0) = 3

f2(1) = 0

f2(0) = 0

f2(1) = 0

f2(0) = 3

f2(1) = 0

f2(0) = 0

f2(1) = 0
V = 1

V = 0.9

V = 1

V = 2.1

V = 0

V = 2.1

f1*(0) = 1.0

f1*(1) = 0.9

f1*(0) = 5.1

f1*(1) = 0

V = 3.57

V = 1.97

f0*(0) = 1.97

Figure 2. Simple Example of Sequential Decision
Model of SAGHP Rendered as an SDM tree

 - 3 -

Algorithmic Complexity
We compute the optimal policy for the

dynamic program using the value iteration
algorithm. Traditionally, two algorithms—policy
iteration and value iteration—are considered for
such problem. In our case, each of the iterations in
the policy iteration algorithm involves a protracted
iterative computation requiring sweeps through the
state set. For that reason, we draw on the value
iteration algorithm for our dynamic program. The
value iteration is obtained by taking the optimality
equation as an update rule. The backup operation
includes policy improvement and truncated policy
evaluation steps. While the state-action space is
traversed recursively, the total number of truncated
policy evaluation operations equals to the number
of action nodes and the total number of policy
improvement operations equals to the number of
decision nodes, in the language used in Figure 2. As
a result, the worst-case complexity of this algorithm
can be derived via counting the number of nodes in
the tree. Let us define:

T = the number of decision epochs in the planning
horizon;

N = the number of capacity levels considered in a
period;

M = the number of actions possible in a decision
stage;

F = the number of flights to release in a decision
stage;

G = the number of groups of flights.

It can be derived that the value iteration
algorithm solves the SDM described by model (2a)

in)))(((TG N
G
FO time.

Consider the existence of a priority ordering
among the flights. Such ordering is summoned in
current practice to ensure the equity in assigning
delays to flights. From an optimization point of
view, a priority ordering imposes constraints for
making the optimal ground-holding decisions.
Unlike the original problem that solves for the
optimal combination of flights to hold from each
group, with a priority ordering, the flights to hold
are determined based on the ordering and we only
need to solve for the optimal number of flights to
hold. In this setup, the problem reduces to the
special case of G = 1 and the algorithm can solve
the problem in time.))((TFNO

The complexity presented above show that the
value iteration algorithm for this problem is an
exponential-time algorithm. Note that this worst-
case complexity is an upper bound on the running
time for sufficiently large values of the parameters

inside the big O notation. The running time of a
problem depends also on the actual magnitude of
these parameters and use of problem-specific
computational strategies. In addition, heuristics that
have potential to cut down redundant computations
can be helpful. Several computational strategies are
proposed in the next section to make a typical real-
world problem solvable within reasonable time.

Computational Solution Strategies
The algorithmic complexity results in the

previous section indicate the need for
computational solution strategies to reduce the time
complexity for problems of realistic size. In this
section, we describe the use of memoization,
priority ordering, and heuristics to alleviate the
computational load.

Memoization
Dynamic programming is particularly efficient

in problems in which the same subproblems occur
over and over again. Fortunately, this is the case for
our problem. Memoization is an algorithmic
technique used to accelerate computation by storing
the results of subproblems for later reuse, rather
than re-solving them. Memoizing the top-down
recursive algorithm is a variation of dynamic
programming which traditionally solves the
problems from bottom up. The bottom-up approach
starts the computation from identifying and solving
all the subproblems at the bottom level. To give an
inkling of the predicament in the bottom-up
approach, consider a SAGHP of hundreds of flights
with various flight durations. The subproblems are
characterized by the attributes of the flights waiting
in the ground queue and the flights released but yet
to land, in addition to the time and the capacity
level at the destination airport. The combinatorial
effect of these parameters can produce a huge
number of subproblems. However, some of the
subproblems need not be solved at all because they
would arise only from clearly suboptimal upstream
decisions that would never be made. Therefore, for
the dynamic program for SAGHP, the top-down
memoized algorithm has the advantage of only
solving those subproblems that are definitely
required, and solving them only once.

Priority Ordering
In Subsection 2.1 we discussed the value of

priority ordering among flights in the reduction of
algorithmic complexity. We showed that priority
ordering of flights reduces the time complexity of

the algorithm from)))(((TG N
G
FO to .

Though the use of memoization changes the
complexity developed previously, the savings from

))((TFNO

 - 4 -

transforming an exponential component to
polynomial should nevertheless be considerable.
Therefore, we consider priority ordering as a
second computational solution strategy.

One sensible way to prioritize flights is to
release the longer duration flights first. This is
justified for two reasons. First, delays to flights
with longer duration typically have higher
economic cost. For long haul flights, airlines
usually use larger aircraft, and carry more
passengers. Moreover, holding long haul flights on
the ground incurs unrecoverable delay costs which
may prove unnecessary if destination airport
capacity evolves favorably. Short haul flights, in
contrast, can be managed in a more responsive
manner as capacity evolves over time. For these
reasons, it is sensible to give flights with longer
flight durations the priority to take off. This is
recognized, albeit somewhat bluntly, in the current
practice by “exempting” long-haul flights from
GDPs. Here, we do not exempt such flights, but
rather allow them to take-off ahead of shorter
flights. We term this prioritization scheme Longest
Goes First or LGF.

A second prioritization scheme, Ration by
Schedule (RBS), is employed in current practice for
non-exempt flights. As its name suggests, RBS
gives flights with earlier scheduled arrival time the
priority. The airline community considers RBS the
most equitable method of allocating capacity. In
contrast to LGF, RBS protects short-haul carriers
and flights from bearing the brunt of GDPs. Thus,
while LGF may be a more efficient scheme, RBS is
a more equitable one, at least from airlines’ point of
view. (One could also employ a weighted priority
scheme that considers both the schedule and flight
duration, but this will not be investigated here.)

Heuristics for Searching for Best Action
The optimality equation (2a), i.e. the cost-to-

go function at time t, is convex in [4].
One adverse consequence of using LGF or RBS
priority is that the cost-to-go function is no longer
convex in the number of flights to hold. Given a set
of flights ready for departure,

Γ∈∀γγ ,tZ

pF , one must evaluate
the cost-to-go function for every integer from 0 to

pF to guarantee that the true optimum is found. To

further reduce the computation time, we investigate
two heuristics, which we term H1 and H2, that
ignore the non-convexity.

To describe these heuristics, we introduce the
following notation. Let n be the number of flights
ready to be released at period t. Denote the cost-to-
go at decision node p when holding x flights by fp

(x). Also, let x* denote the best number of flights to
hold determined by a given algorithm. The heuristic
algorithm H1 is described as follows.

Step 1: At decision node p, compute the cost-to-go
for the actions at the two ends of the cost function;
that is, releasing none of the flights, fp (n), and
releasing all of the flights, fp (0).

Step 2: If fp (0) ≤ fp (n), set x* 0 and go to Step 3;
otherwise, set x*

=:
=: n and go to Step 4.

Step 3: FOR x = 1 to n-1 DO:

If fp (x) > fp (x - 1), then fp (x - 1) is a local
minimum. Set x* =: x – 1 and stop. Else continue.

Step 4: FOR x = n-1 to 1 DO:

If fp (x) > fp (x + 1), then fp (x + 1) is a local
minimum. Set x* =: x + 1 and stop. Else continue.

Step 5: x* is the best number of flights to hold at
decision node p and fp (x) is the lowest cost found
by this algorithm.

Steps 1 and 2 are devised to cut down the
chase and pick one direction to search from. If we
were to search from both sides, we would often
evaluate the function over the entire range and thus
defeat the purpose of reducing computations. This
algorithm finds the optimal action when the cost-to-
go function is convex in the number of flights to
hold. When the cost-to-go function is not convex,
the solution it yields may be only a local optimum.

To further reduce the computations and arrive
at suboptimal but probably good solutions, we
propose heuristic algorithm H2. In this heuristic, we
always begin our search from zero. This approach
is motivated by the observation that in most cases
the optimum number of flights to hold will be
closer to 0 than n. Thus heuristic algorithm H2 is as
follows.

Step 1: At decision node p, compute the cost-to-go
fp (0).

Step 2: FOR x = 1 to n-1 DO:

If fp (x) > fp (x - 1), then fp (x - 1) is a local
minimum. Set x* =: x – 1 and stop. Else continue.

Step 3: x* is the best number of flights to hold at
decision node p and fp (x) is the lowest cost found
by this algorithm.

While H2 may seem to reduce computational
burden only slightly compared to H1, it can make a
considerable difference in computation time.
Considering that these heuristics are applied at each
decision node in the SDM tree, cumulatively H2
can save a sizable number of computations for a
large problem. The effect is multiplicative with the

 - 5 -

1 0 4 0 2 0 1 0 1 0 1 0 1
2 0 4 0 2 0 1 0 2 0 3 0 2
3 0 4 0 4 0 2 0 2 0 3 0 3
4 0 4 0 4 0 4 0 4 0 4 0 4
5 1 5 1 3 1 2 1 2 1 2 1 2
6 1 5 1 3 1 2 1 3 1 4 1 3
7 1 5 1 5 1 3 1 3 1 4 1 4
8 1 5 1 5 1 5 1 5 1 5 1 5

Flight
Index

Case 5
Departure

Period
Arrival
Period

Case 6
Departure

Period
Arrival
Period

Case 3
Departure

Period
Arrival
Period

Case 4
Departure

Period
Arrival
Period

Departure
Period

Arrival
Period

Case 1 Case 2
Departure

Period
Arrival
Period

Table 1. Flight Schedule for the Test Cases

number of time periods, so that a 10% saving over
one period becomes a 2/3 saving over 10 periods.

Computational Experiments
We programmed the model in Java JDK 5.0

and used it to perform a series of experiments on a
Linux server. The aim of the experiments was to
compare the exact model with models incorporating
flight prioritization and heuristic search. The latter
models are expected to have a considerable
advantage in computation time, but to yield
solutions that are somewhat suboptimal. We sought
to gauge the relative magnitude of these
differences, and thereby assess the feasibility of the
scenario-free approach to the SAGHP for real-
world scale problems.

Experimental Design
We experiment with six test cases. The test

cases all have eight flights to release but each test
case has a different flight duration mix, as
described in Table 1. The arrival capacity transition
matrix (Table 2) is fixed throughout the planning
horizon of six periods and the initial capacity level
is two flights per period.

The flight duration is the same for all the
flights in Case 1. Under this condition, the exact
model and flight priority models are essentially the
same. In this case, all models solve in about the
same time (Figure 2), and arrive at the same
optimal solution (Figure 3). As the mix of flight
durations becomes more heterogeneous,
computation time for the exact model increases
dramatically, while remaining essentially constant
for the priority models. The use of priority
ordering reduces computation time 87% with two
flight durations (Case 2), and 97% when there are
four durations (Case 6). Not surprisingly, the LGF
and RBS priority scheme exhibit similar
computation times for each case, although RBS is
consistently somewhat faster to solve.
from \ to 2 3 4

2 0.4 0.4 0.2
3 0.2 0.6 0.2
4 0.2 0.4 0.4

Table 2. Capacity Transition Matrix for
Experiments

On the other hand, optimal total delay costs
computed by the priority models are not much
higher than that obtained using the exact model. In
fact, in every case one of the priority models arrives
at virtually the same optimal cost as the exact
algorithm. Among the six test cases, the biggest
deviations from the exact optimal cost due to LGF
and RBS are 29% (RBS, Case 3), 33% (RBS, Case
4), and 32% (LGF, Case 5). There is no clear
pattern concerning the relative sub-optimality of
LGF and RBS.

0

500

1000

1500

2000

2500

3000

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Test Cases

C
om

pu
ta

tio
n

Ti
m

e
(m

ill
is

ec
on

ds
)

Exact
LGF
RBS

D=1: 25%
D=2: 25%
D=4: 50%

D=1: 25%
D=2: 50%
D=4: 25%

D=1: 25%
D=3: 50%
D=4: 25%

D=1: 25%
D=2: 25%
D=3: 25%
D=4: 25%

D:
Flight
Duration

D=2: 50%
D=4: 50%

D=4: 100%

Number of capacity levels: 3
Number of time periods: 6
Machine: Linux server

Figure 2. Computation Time with and without
Priority Orderings of Flights

0

2

4

6

8

10

12

14

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Test Cases

O
pt

im
al

 T
ot

al
 D

el
ay

 C
os

t

Exact
LGF
RBS

D=4: 100% D=2: 50%
D=4: 50%

D=1: 25%
D=2: 25%
D=4: 50%

D=1: 25%
D=2: 50%
D=4: 25%

D=1: 25%
D=3: 50%
D=4: 25%

D=1: 25%
D=2: 25%
D=3: 25%
D=4: 25%

D:
Flight
Duration

Figure 3. Optimal Total Delay Cost with and
without Priority Ordering of Flights

 - 6 -

In brief, we experimentally confirmed the
effectiveness of priority ordering in reducing
computation time as the heterogeneity of the flight
durations increases. At the same time, we found
that the loss in the quality of solution was never
very large, and negligible for at least one priority
scheme, in every one of our six test cases.

Heuristics
In Section 3, we proposed two heuristics, H1

and H2, to further reduce the computation required
to implement priority ordering schemes. These
heuristics are devised to find the optimal number of
flights to hold when there is a prioritization scheme
in effect. In this subsection, we investigate the
effect of these heuristics when used in conjunction
with LGF and RBS prioritization.

We continue the use of the six cases
introduced in the previous section. Figure 4 shows
the computation time results from using heuristics
H1 and H2 with each of the two prioritization
schemes. Consistently, heuristic H2 takes less time
than heuristic H1, and heuristic H1 takes less time
than the original priority model. Heuristic H1
reduces computation time 58-86% for LGF, 59-
82% for RBS. Savings using H2 increase to 75-
99% and 75-94% respectively. The effects of the
heuristics are least under Case 1. This is probably
because the cost-to-go function is convex in this
case, and it takes longer, on average, for the
heuristics to find an optimum when only one such
optimum exists.

The total delay cost obtained from the
heuristics is exhibited in Figure 5, which presents
this cost as a percentage of the optimal cost
computed by the exact algorithm. As expected, all
the algorithms arrive at the same solution for Case
1. For other cases, the costs obtained from the
heuristics exceed the optimal cost to varying
degrees. Generally, however, the difference is
slight. Moreover, the larger differences (in Cases 3,
4, and 5) are mostly caused by the adoption of the
priority ordering scheme rather than the heuristics
per se. The only appreciable penalty from using H1
is in RBS Case 4, in which the prioritization causes
a 33% cost increase which H1 takes up to 40%. H2
does slightly worse in this case, yielding a cost 44%
over the true optimum. H2 also performs relatively
poorly in RBS Case 3, increasing the cost 49% over
the original solution, as compared to the 29%
increase with priority ordering without heuristic.
On the other hand, across these six cases, the
heuristics do not lead to any cost overage when
used with LGF prioritization.

In sum, the heuristics reduce computation
time by 40% to 99% in our numerical experiments.
Between heuristics H1 and H2, H2 reduces the

computation time more dramatically but is
somewhat more likely to incur a cost penalty. In
these test cases, the heuristics lead to the same
optimal solution when the LGF priority rule is used,
but sometimes lead to actions that are more costly
when the RBS priority rule is used. Another pattern
suggested, albeit far from conclusively, from these
results, is that the cost penalties from heuristic use
are highest in the cases where the penalties from
using priority ordering are also highest. While these
initial results are promising, more extensive testing
and analysis is required before the heuristics can be
recommended for real-world application.

0

20

40

60

80

100

120

140

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Test Cases

C
om

pu
ta

tio
n

Ti
m

e
(m

ill
is

ec
on

ds
)

LGF
LGF-H1
LGF-H2
RBS
RBS-H1
RBS-H2

D=4: 100% D= 2: 50%
D= 4: 50%

D=1: 25%
D=2: 25%
D=4: 50%

D=1: 25%
D=2: 50%
D=4: 25%

D=1: 25%
D=3: 50%
D=4: 25%

D=1: 25%
D=2: 25%
D=3: 25%
D=4: 25%

D:
Flight
Duration

Number of capacity levels: 3
Number of time periods: 6
Machine: Linux server

Figure 4. Computation Time with and without

the Heuristic

0%

20%

40%

60%

80%

100%

120%

140%

160%

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Test Cases

B
es

t T
ot

al
 D

el
ay

 C
os

t R
el

at
iv

e
to

 E
xa

ct
 O

pt
im

al
 C

os
t

LGF
LGF-H1
LGF-H2
RBS
RBS-H1
RBS-H2

D=4: 100% D= 2: 50%
D= 4: 50%

D=1: 25%
D=2: 25%
D=4: 50%

D=1: 25%
D=2: 50%
D=4: 25%

D=1: 25%
D=3: 50%
D=4: 25%

D=1: 25%
D=2: 25%
D=3: 25%
D=4: 25%

D:
Flight
Duration

Figure 5. Impact of the Heuristics on the Best
Total Delay Cost

Real-world Application
The six cases above are small scale problems

formulated so that they cane be solved fairly
quickly by all models, including the exact model. In
this subsection, we investigate the computational
feasibility of solving a real-world problem using
our model and algorithms. For this investigation,
we first identify a real-world problem as our target
problem and then use our algorithm to determine
the optimal policy for the SAGHP.

 - 7 -

Our case is based on San Francisco
International Airport (SFO) on the day of March 2,
2006. In general, SFO has a relatively high
proportion of arrivals subject to ground holds, and
March 2006 was a month in which ground holding
at SFO was particularly common (Table 3). We
chose March 2 as a representative day within that
month, because it had the median proportion of
ground-held flights (Table 4).
Month Number of Arrivals Arrivals with EDCT % of Arrivals with EDCT
January 13484 1419 10.52%
February 11513 1556 13.52%
March 13102 2864 21.86%
April 12889 2520 19.55%
May 12872 824 6.40%
Table 3. Arrival Data at SFO for year 2006 from
FAA ASPM Database
Date Number of Arrivals Number of Arrival with EDCT % of Arrivals with EDCT
3/7/2006 427 8 1.87
3/6/2006 426 9 2.11
3/14/2006 423 9 2.13
3/9/2006 437 12 2.75
3/25/2006 395 24 6.08
3/22/2006 439 60 13.67
3/13/2006 429 60 13.99
3/15/2006 429 68 15.85
3/17/2006 442 85 19.23
3/21/2006 427 101 23.65
3/2/2006 427 115 26.93
3/27/2006 425 123 28.94
3/12/2006 413 120 29.06
3/20/2006 430 149 34.65
3/29/2006 430 158 36.74
3/10/2006 432 182 42.13
3/30/2006 425 183 43.06
3/5/2006 393 248 63.1
3/28/2006 408 264 64.71
3/31/2006 440 285 64.77
3/16/2006 414 293 70.77
3/24/2006 425 308 72.47
Table 4. Arrivals with EDCT in March, 2006 at
SFO

From the airport data on March 2nd, we
observe nearly continuous capacity shortage
(arrival demand greater than AAR) from 8:45am to
1:15pm. In addition, most of the flights scheduled
to arrive in this period have scheduled departure
time from 7am to 12pm. Hence, for this target
problem, we include flights with scheduled
departure time from 7am to 12pm inbound to SFO.
The planning horizon is set for seven hours in total
(7am to 2pm). The airport data indicate that the
arrival capacity at SFO on that day was around six
to seven aircraft per quarter hour across the entire
planning horizon. According to the flight schedule,
28 of the flights arriving in between 9am to 2pm
originate from foreign airports. To account for the
exemption of the international flights in the
SAGHP, we simplify by reducing the arrival
capacity level and assuming a constant capacity
transition matrix throughout the planning horizon
(Table 5) with initial arrival capacity level at 5.
Though the matrix is a simplification, a 3-by-3
capacity transition matrix nevertheless reflects the
real airport situation. The weather condition at an
airport is categorized as VFR, MVFR (marginal
VFR), or IFR based on the visibility and ceiling
conditions. For the same runway configuration, the
capacity level is a function of the weather
condition. Therefore, it is reasonable to consider

three possible capacity levels due to the three
primary weather conditions. Excluding the
international flights, there are 116 flights departing
between 7am and 12pm. We consider these 116
flights in the target problem (Table 6).
from \ to 5 6 7

5 0.4 0.5 0.1
6 0.3 0.4 0.3
7 0.2 0.3 0.5

Table 5. Transition Matrix for the Target
Problem
Departure Hour Departure Quarter Number of Flights Flight Duration

7 1 6 3 5 8 15 17 17
7 2 6 5 6 7 7 11 5
7 3 8 4 6 6 8 9 11 16 21
7 4 8 4 5 5 5 5 8 8 18
8 1 6 3 5 17 17 17 17
8 2 6 5 5 5 6 9 26
8 3 2 12 25
8 4 3 7 7 25
9 1 6 2 3 4 5 5 6
9 2 10 4 6 6 6 7 7 8 11 20 23
9 3 5 2 3 16 17 17
9 4 3 5 6 6

10 1 12 4 4 4 5 6 7 7 7 8 8 18 20
10 2 2 6 6
10 3 5 5 6 6 10 21
10 4 2 2 4
11 1 8 5 5 5 6 6 7 18 18
11 2 4 8 11 25 25
11 3 8 4 4 5 6 6 7 13 24
11 4 6 3 5 5 6 8 8

Table 6. Scheduled Flights in the Target
Problem

We solve the target problem with heuristic H2
on the Linux server and present the computational
results in Table 7. The algorithm reached a slightly
lower optimal cost but had a much longer
computation time with RBS priority ordering. But
even with RBS, the computation is completed in 20
seconds—well within the acceptable range for real-
world application.

On the other hand, it took more than two
hours for the algorithm with heuristic H1 to solve
this target problem using LGF. This is not
surprising since, as discussed above, the modest
savings from using time heuristic H1 in a given
time period grow exponentially with the number of
time periods. For a realistic scale problem, this
difference is sufficient to make H2 the only feasible
heuristic for our computing resources.

LGF RBS
Number of Decision Nodes 156301 415228
Optimal Expected Total Delay Cost 26.43 25.87
Computation Time (milliseconds) 2324 19741

Priority Ordering

Table 7. Computational Results for the Target
Problem

Conclusion
In this paper, we have investigated the use of

sequential decision models to optimize ground
holding decisions in the context of the single airport
ground holding problem. We formulated the model
using a dynamic program and solved it with a value
iteration algorithm. As far as we know, this is the
first scenario-free model that can provide a
dynamic optimum for the SAGHP.

 - 8 -

From complexity analysis, we recognized the
need to explore computational strategies so as to
manage the curse of dimensionality of dynamic
programming. Firstly, we observed numerous
overlapping subproblems in the dynamic program,
and chose to memoize the top-down recursive
algorithm instead of using the traditional bottom-up
approach. Memoization cuts down computation
time dramatically and provides the same optimal
solution.

Next, we explored several strategies that can
reduce computation time but may result in
suboptimal solutions. From the algorithmic
complexity, we observed that priority ordering
among flights could reduce the computational load
significantly. We proposed two priority ordering
schemes, and found that they could help reduce the
computation time greatly while providing solutions
that were nearly optimal in our test cases.
Additionally, the structural property of the cost-to-
go function inspired us to devise heuristics for
limited search. We found the heuristics helpful in
further reducing computation time while only
slightly reducing solution quality. Schematically,
our exploration of computational strategies for this
computationally intense problem can be
summarized by Figure 6.

As a proof of concept, we demonstrated the
computational feasibility of our model and
algorithm for solving a typical real-world SAGHP.
We found that the problem can be solved within an
acceptable time for real-world application. In this
real-world example, the model, in fact, planned for
trillions of capacity scenarios. This quantity is
clearly out of the capacity of the integer
programming solvers today, and demonstrated an
advantage of the scenario-free modeling approach.
However, it is not clear by how much the
computational strategies compromise the quality of
solution. The comparison of the performance of the
scenario-based model and the scenario-free model
in a real-world setting is the topic of our on-going
research.

Computation Time

Suboptimality

Brute-force Dynamic Programming

DP with Memoization

Priority Ordering

Priority Ordering w/ Limited Search

Figure 6. Effect of Computational Strategies

References
[1] Richetta, Octavio, Amedeo Odoni, 1994,
Dynamic solution to the ground-holding problem in
air traffic control, Transportation Research Part A,
28 (3), pp. 167–185.

[2] Ball, Michael, Robert Hoffman, Amedeo Odoni,
Ryan Rifkin, 2003, A stochastic integer program
with dual network structure and its application to
the ground-holding problem, Operations Research,
51, pp. 167–171.

[3] Mukherjee, Avijit, Mark Hansen, 2005,
Dynamic stochastic optimization models for air
traffic flow management with en route and airport
capacity constraints, Proceedings of the 6th
USA/Europe Air Traffic Management R&D
Seminar, Baltimore, MD.

[4] Liu, Pei-Chen, 2006, Managing Uncertainty in
the Single Airport Ground Holding Problem using
Scenario-based and Scenario-free Approaches,
Ph.D. dissertation, University of California,
Berkeley.

[5] Andreatta, Giovanni, Giorgio Romanin-Jacur,
1987, Aircraft flow management under congestion,
Transportation Science, 21(4), pp. 249–253.

[6] Terrab, Mostafa, Amedeo Odoni, 1993,
Strategic flow management for air traffic control,
Operations Research, 41(1), pp. 138–152.

Key Words
Air Traffic Flow Optimization; Ground Delay

Program; Ground Holding Problem; Dynamic
Programming; Stochastic Optimization.

 - 9 -

Biography
Pei-chen Barry Liu is currently a Ph.D. student at
the University of California at Berkeley. He
received a BS (1997, Civil Engineering) from
National Taiwan University, MS (1999, Structural
Engineering) from Stanford University, and MS
(2006, Industrial Engineering and Operations
Research) from UC Berkeley. He works at IBM on
business intelligence applications as a software
developer prior to and during his doctoral studies.
His research interests include air traffic
management, machine learning, and stochastic
optimization.

Mark Hansen is a Professor of Civil and
Environmental Engineering at UC Berkeley and co-
director of the National Center of Excellence in
Aviation Operations Research. He has
undergraduate degrees in Physics and Philosophy
from Yale University, and a Master’s in City and
Regional Planning and a Ph.D. in Engineering
Science from UC Berkeley.

 - 10 -

	Abstract
	Introduction
	Sequential Decision Model for SAGHP
	Algorithmic Complexity

	Computational Solution Strategies
	Memoization
	Priority Ordering
	Heuristics for Searching for Best Action

	Computational Experiments
	Experimental Design
	Heuristics
	Real-world Application

	Conclusion
	References
	Key Words
	Biography

