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Abstract 
This paper aims to advance the support of 

decision-making in air traffic flow management 
under uncertainty with a focus on the single airport 
ground holding problem (SAGHP). Learning from 
the shortcomings of the scenario-based models for 
SAGHP that address uncertainty using probabilistic 
capacity scenarios, we develop a sequential 
decision model that is not limited by a small set of 
scenarios. We present computational strategies and 
demonstrate the computational feasibility of the 
model.  

Introduction 
Ground Delay Programs (GDPs) mitigate 

destination airport capacity-demand imbalances by 
assigning ground delays to flights at their origin 
airports. The ground-holding problem (GHP) is that 
of ground-holding flights to minimize the overall 
cost of ground and airborne delays. The ground-
holding problem for a single destination airport is 
termed the Single Airport Ground Holding Problem 
(SAGHP). The SAGHP has been modeled using 
scenario-based stochastic programming models in 
several studies [1][2][3]. In this context, a scenario 
is a representative time series of arrival capacity 
values for an airport over a day or some part of a 
day, as illustrated in Figure 1.  

One of the primary shortcomings of the 
scenario-based models is that they assume a limited 
number of capacity scenarios when in reality there 
is a much larger set of possibilities for capacity 
evolution. The number of scenarios is limited by 
model solver capacity and data availability. In 
addition, scenario-tree-based models impose a 
scenario tree structure when in reality improved 
information about future capacity is obtained 
continually rather than at a few discrete branching 
points. On the implementation side, a previous 
empirical study [4] has shown that the costs 
incurred from applying the output of scenario-based 
optimization models to airports is considerably 
higher than the theoretical optimization results 
suggest. The reasons for this discrepancy include a) 
the actual capacities vary around the nominal 
values assumed in the optimization; b) there is 
uncertainty in correctly identifying the scenario that 
matches best with the condition as more 
information of the capacity evolution is obtained 
over time. Hence, in this paper, we consider a 

“scenario-free” sequential decision making model 
to avoid these inadequacies.  

The use of dynamic programs for the GHP 
was explored by Andreatta and Romanin-Jacur [5] 
for a simplified single-time period SAGHP and 
Terrab and Odoni [6] for SAGHP with multiple 
time periods. Terrab and Odoni formulated a 
dynamic program based on the assumption that a 
fixed landing priority rule has been specified for the 
flights, and solved for ground-holds for each 
individual flight. The stochasticity in the problem 
was accounted for using a set of capacity scenarios. 
However, their model is a static one, since it does 
not allow for recourse actions. Since then, the use 
of dynamic programming for the SAGHP has 
received little attention because of concerns about 
the curse of dimensionality. A decade after the 
initial attempt of using dynamic programs to solve 
SAGHP, we investigate the applicability of a true 
“dynamic” program for SAGHP in light of the 
limitations of the scenario-based stochastic 
programs, and ever-increasing computing power. 

0

2

4

6

8

10

12

14

16

8:00-
8:15

8:15-
8:30

8:30-
8:45

8:45-
9:00

9:00-
9:15

9:15-
9:30

9:30-
9:45

9:45-
10:00

10:00-
10:15

10:15-
10:30

Time Periods (in a.m.)

A
rr

iv
al

 C
ap

ac
ity

 (#
 a

llo
w

ed
 fo

r l
an

di
ng

 
pe

r q
ua

rt
er

 h
ou

r)

Scenario 1

Scenario 2

Scenario 3

 
Figure 1. Illustration of Capacity Scenarios 

Sequential Decision Model for 
SAGHP 

The process of making ground-holding 
decisions in a SAGHP can naturally be described as 
sequential decision making. The ground holding 
decisions are responses to the capacity uncertainties 
at the destination airport, and we want to react 
optimally to the most updated information. We 
formulate this sequential decision making model 
using a dynamic program. In this model, the states 
we react to are the arrival capacity levels at the 
destination airport; the actions (or decision 
variables) are the flights to hold on the ground at 
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each decision period; the objective function is to 
minimize total expected delay cost; and the optimal 
policies are the actions to take at any state-action 
trajectory. We assume the availability of transition 
probability matrices of airport arrival capacities at 
each time period. We also assume that both the 
queue on the ground and the queue in the air will 
clear at the end of the planning horizon. As such, no 
delay cost would be incurred after the planning 
horizon. We introduce the following notations:  

F = the set of all the flights considered in the 
planning horizon. 

T  = the last time period in the planning horizon. 
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τf  = the duration of flight of flight f. 

At = the number of flights planned by the model to 
arrive in time period t. 

Lt = number of flights intending to land at time t. 

Wt = number of flights experiencing airborne delay 
at time t.  

Kt = arrival capacity at the destination airport at 
time t. 

Kmax(t) = maximum arrival capacity at the 
destination airport at time t. 

Kmin(t) = minimum arrival capacity at the 
destination airport at time t.  

Pkk’ = transition probability from arrival capacity k 
to k’ in the next period. 

cg = cost of ground delay for one time period per 
flight. 

ca = cost of airborne delay for one time period per 
flight. 

Among the above notations, only  is a 

decision variable.  and τ

t
fX

t
fS f are given from the 

flight schedule and it is assumed that the duration 
of flight is deterministic.  and At

fY t are auxiliary 
variables to help describe the dynamics. The 
optimality equation can be stated using the notation 
defined above as: 
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When the difference  equals to one, 
the flight f experiences ground holding during 
period t. Therefore, the number of flights to hold in 
period t is the sum of such differences over all the 
flights. Constraint set (1b) ties the planned arrival 
time of flight (t + 1 + τ

t
f

t
f SX −

f) to its departure time (t + 1) 
and its duration (τf) through the auxiliary 
variable . Equation set (1c) calculates the number 
of flights planned to arrive in time t, A

t
fY

t. Constraint 
set (1e) states that the number of flights desiring to 
land in period t includes those planned to arrive in 
period t and those queued in the air in period t – 1. 
Constraint set (1f) ensures that a flight does not 
take off until its scheduled departure time. 

 In this formulation, the total delay cost is 
optimized on the basis of ground holding decisions 
for each individual flight. Clearly, the action space 
(to hold or not to hold each flight) is combinatorial 
with worst case of 2|F| per period and the 
computation is likely to be intractable. The 
computational load can be greatly reduced when we 
consider flights in groups classified by flight 
durations. When a group of flights of the same 
duration are candidates for release in a given 
period, it is clear that the objective function 
depends only on the number of flights from this 
group to release, not on which individuals to 
release. We thus reformulate the problem by 
grouping the flights in F according to their 
durations. We introduce the following notations for 
the reformulation.  

Γ = the set of groups that represent the 
classification of flights. 

tZγ
= number of group γ flights to hold on the 

ground in time period t. 

t
γξ = number of group γ flights planned by the model 

to arrive in time period t. 
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tSγ
= number of group γ flights scheduled for 

departure at time t. 
tGγ
= number of group γ flights queued on ground 

from previous periods by time t. 

The reformulated optimality equation can be 
expressed as: 
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In the optimality equation (2a), the decision 
variable is the number of flights to hold for each 
duration group γ in time period t, . Constraint set 
(2b) associates the action in period t – 1 to its 
implication for the queue on the ground in period t. 
Constraint set (2c) links the departure and planned 
arrival of flights with their flight durations. 
Constraint set (2d) calculates the number of flights 
planned to land in time t, A

tZγ

t, by summing over the 
number of flights planned to land in period t from 
all the duration groups. 

The computational advantage of the 
reformulation can be illustrated using a simple 
example. Consider nine flights waiting for 
departure in the current time period. Suppose these 
nine flights belong to three groups of sizes two, 
three, and four. Using formulation (1a), there are 
512 (29) candidate holding action combinations to 
evaluate. When solving for the number of flights to 
hold per group as in formulation (2a), only 60 (3 × 
4 × 5) action combinations need to be evaluated. 
The model (2a) reduces the action space 
significantly; at the same time, the model yields the 
same optimal policy. 

 Before we discuss the mathematical 
properties of the model, let us consider a simple 
numerical example and illustrate the mechanics of 
the decision process. Figure 2 depicts the 
Sequential Decision Model (SDM) for a very 

simple SAGHP. In this example, there is one flight 
scheduled to depart at time 0 with flight duration of 
one time period. Destination capacity levels are 0 
and 1 with a stationary transition probability matrix 

of . The capacity in the initial period is 0. 

Unit delay costs are c

10
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g = 1 and ca = 3. There is a 
planning horizon of two periods, and it is 
guaranteed that the flight can land in the third 
period. The decision process is described by an 
acyclic directed graph with two types of nodes: 
decision nodes and action nodes. We refer to such a 
graph as an SDM tree. The decision node with 
capacity level k at decision period t is marked by 
“Kt = k.” The action node with the number of 
flights to hold h at decision period t is marked by 
“Ht = h.” The associated number of flights in the 
ground queue Gt and number of flights in the 
airborne queue Wt are listed next to each of the 
nodes. Also listed are the costs evaluated at each 
step. At a decision node, the decision maker selects 
the least costly admissible action. The value of the 
least-cost action chosen, ft*(Kt), is the cost 
associated with this decision node at period t with 
capacity level Kt. At an action node, the decision 
maker evaluates the expected cost-to-go of taking 
this particular action. The expected cost-to-go 
associated with each actions is listed as “V = cost.” 
In this example, the optimal policy is to hold the 
flight at period 0. As this example illustrates that 
there are quite a few calculations required even for 
a very small problem, this suggests that the 
dimension of the SDM tree could be huge for 
problems with realistic size.  
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Figure 2. Simple Example of Sequential Decision 
Model of SAGHP Rendered as an SDM tree 
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Algorithmic Complexity 
We compute the optimal policy for the 

dynamic program using the value iteration 
algorithm. Traditionally, two algorithms—policy 
iteration and value iteration—are considered for 
such problem. In our case, each of the iterations in 
the policy iteration algorithm involves a protracted 
iterative computation requiring sweeps through the 
state set. For that reason, we draw on the value 
iteration algorithm for our dynamic program. The 
value iteration is obtained by taking the optimality 
equation as an update rule. The backup operation 
includes policy improvement and truncated policy 
evaluation steps. While the state-action space is 
traversed recursively, the total number of truncated 
policy evaluation operations equals to the number 
of action nodes and the total number of policy 
improvement operations equals to the number of 
decision nodes, in the language used in Figure 2. As 
a result, the worst-case complexity of this algorithm 
can be derived via counting the number of nodes in 
the tree. Let us define: 

T = the number of decision epochs in the planning 
horizon; 

N = the number of capacity levels considered in a 
period; 

M = the number of actions possible in a decision 
stage; 

F = the number of flights to release in a decision 
stage; 

G = the number of groups of flights. 

It can be derived that the value iteration 
algorithm solves the SDM described by model (2a) 

in )))((( TG N
G
FO time. 

Consider the existence of a priority ordering 
among the flights. Such ordering is summoned in 
current practice to ensure the equity in assigning 
delays to flights. From an optimization point of 
view, a priority ordering imposes constraints for 
making the optimal ground-holding decisions. 
Unlike the original problem that solves for the 
optimal combination of flights to hold from each 
group, with a priority ordering, the flights to hold 
are determined based on the ordering and we only 
need to solve for the optimal number of flights to 
hold. In this setup, the problem reduces to the 
special case of G = 1 and the algorithm can solve 
the problem in time. ))(( TFNO

The complexity presented above show that the 
value iteration algorithm for this problem is an 
exponential-time algorithm. Note that this worst-
case complexity is an upper bound on the running 
time for sufficiently large values of the parameters 

inside the big O notation. The running time of a 
problem depends also on the actual magnitude of 
these parameters and use of problem-specific 
computational strategies. In addition, heuristics that 
have potential to cut down redundant computations 
can be helpful. Several computational strategies are 
proposed in the next section to make a typical real-
world problem solvable within reasonable time. 

Computational Solution Strategies 
The algorithmic complexity results in the 

previous section indicate the need for 
computational solution strategies to reduce the time 
complexity for problems of realistic size. In this 
section, we describe the use of memoization, 
priority ordering, and heuristics to alleviate the 
computational load.  

Memoization 
Dynamic programming is particularly efficient 

in problems in which the same subproblems occur 
over and over again. Fortunately, this is the case for 
our problem. Memoization is an algorithmic 
technique used to accelerate computation by storing 
the results of subproblems for later reuse, rather 
than re-solving them. Memoizing the top-down 
recursive algorithm is a variation of dynamic 
programming which traditionally solves the 
problems from bottom up. The bottom-up approach 
starts the computation from identifying and solving 
all the subproblems at the bottom level. To give an 
inkling of the predicament in the bottom-up 
approach, consider a SAGHP of hundreds of flights 
with various flight durations. The subproblems are 
characterized by the attributes of the flights waiting 
in the ground queue and the flights released but yet 
to land, in addition to the time and the capacity 
level at the destination airport. The combinatorial 
effect of these parameters can produce a huge 
number of subproblems. However, some of the 
subproblems need not be solved at all because they 
would arise only from clearly suboptimal upstream 
decisions that would never be made. Therefore, for 
the dynamic program for SAGHP, the top-down 
memoized algorithm has the advantage of only 
solving those subproblems that are definitely 
required, and solving them only once. 

Priority Ordering 
In Subsection 2.1 we discussed the value of 

priority ordering among flights in the reduction of 
algorithmic complexity. We showed that priority 
ordering of flights reduces the time complexity of 

the algorithm from )))((( TG N
G
FO to . 

Though the use of memoization changes the 
complexity developed previously, the savings from 

))(( TFNO
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transforming an exponential component to 
polynomial should nevertheless be considerable. 
Therefore, we consider priority ordering as a 
second computational solution strategy.  

One sensible way to prioritize flights is to 
release the longer duration flights first. This is 
justified for two reasons. First, delays to flights 
with longer duration typically have higher 
economic cost. For long haul flights, airlines 
usually use larger aircraft, and carry more 
passengers. Moreover, holding long haul flights on 
the ground incurs unrecoverable delay costs which 
may prove unnecessary if destination airport 
capacity evolves favorably. Short haul flights, in 
contrast, can be managed in a more responsive 
manner as capacity evolves over time.  For these 
reasons, it is sensible to give flights with longer 
flight durations the priority to take off. This is 
recognized, albeit somewhat bluntly, in the current 
practice by “exempting” long-haul flights from 
GDPs. Here, we do not exempt such flights, but 
rather allow them to take-off ahead of shorter 
flights. We term this prioritization scheme Longest 
Goes First or LGF. 

A second prioritization scheme, Ration by 
Schedule (RBS), is employed in current practice for 
non-exempt flights. As its name suggests, RBS 
gives flights with earlier scheduled arrival time the 
priority. The airline community considers RBS the 
most equitable method of allocating capacity. In 
contrast to LGF, RBS protects short-haul carriers 
and flights from bearing the brunt of GDPs. Thus, 
while LGF may be a more efficient scheme, RBS is 
a more equitable one, at least from airlines’ point of 
view. (One could also employ a weighted priority 
scheme that considers both the schedule and flight 
duration, but this will not be investigated here.) 

Heuristics for Searching for Best Action 
The optimality equation (2a), i.e. the cost-to-

go function at time t, is convex in [4]. 
One adverse consequence of using LGF or RBS 
priority is that the cost-to-go function is no longer 
convex in the number of flights to hold. Given a set 
of flights ready for departure, 

Γ∈∀γγ ,tZ

pF , one must evaluate 
the cost-to-go function for every integer from 0 to 

pF  to guarantee that the true optimum is found. To 

further reduce the computation time, we investigate 
two heuristics, which we term H1 and H2, that 
ignore the non-convexity.  

To describe these heuristics, we introduce the 
following notation. Let n be the number of flights 
ready to be released at period t. Denote the cost-to-
go at decision node p when holding x flights by fp 

(x). Also, let x* denote the best number of flights to 
hold determined by a given algorithm. The heuristic 
algorithm H1 is described as follows. 

Step 1: At decision node p, compute the cost-to-go 
for the actions at the two ends of the cost function; 
that is, releasing none of the flights, fp (n), and 
releasing all of the flights, fp (0). 

Step 2: If fp (0) ≤ fp (n), set x* 0 and go to Step 3; 
otherwise, set x*

=:
=:  n and go to Step 4. 

Step 3: FOR x = 1 to n-1 DO: 

If fp (x) > fp (x - 1), then fp (x - 1) is a local 
minimum. Set x* =:  x – 1 and stop. Else continue. 

Step 4: FOR x = n-1 to 1 DO: 

If fp (x) > fp (x + 1), then fp (x + 1) is a local 
minimum. Set x* =:  x + 1 and stop. Else continue. 

Step 5: x* is the best number of flights to hold at 
decision node p and fp (x) is the lowest cost found 
by this algorithm. 

Steps 1 and 2 are devised to cut down the 
chase and pick one direction to search from. If we 
were to search from both sides, we would often 
evaluate the function over the entire range and thus 
defeat the purpose of reducing computations. This 
algorithm finds the optimal action when the cost-to-
go function is convex in the number of flights to 
hold. When the cost-to-go function is not convex, 
the solution it yields may be only a local optimum. 

To further reduce the computations and arrive 
at suboptimal but probably good solutions, we 
propose heuristic algorithm H2. In this heuristic, we 
always begin our search from zero. This approach 
is motivated by the observation that in most cases 
the optimum number of flights to hold will be 
closer to 0 than n. Thus heuristic algorithm H2 is as 
follows. 

Step 1: At decision node p, compute the cost-to-go 
fp (0). 

Step 2: FOR x = 1 to n-1 DO: 

If fp (x) > fp (x - 1), then fp (x - 1) is a local 
minimum. Set x* =:  x – 1 and stop. Else continue. 

Step 3: x* is the best number of flights to hold at 
decision node p and fp (x) is the lowest cost found 
by this algorithm. 

While H2 may seem to reduce computational 
burden only slightly compared to H1, it can make a 
considerable difference in computation time. 
Considering that these heuristics are applied at each 
decision node in the SDM tree, cumulatively H2 
can save a sizable number of computations for a 
large problem. The effect is multiplicative with the 
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1 0 4 0 2 0 1 0 1 0 1 0 1
2 0 4 0 2 0 1 0 2 0 3 0 2
3 0 4 0 4 0 2 0 2 0 3 0 3
4 0 4 0 4 0 4 0 4 0 4 0 4
5 1 5 1 3 1 2 1 2 1 2 1 2
6 1 5 1 3 1 2 1 3 1 4 1 3
7 1 5 1 5 1 3 1 3 1 4 1 4
8 1 5 1 5 1 5 1 5 1 5 1 5

Flight 
Index

Case 5
Departure 

Period
Arrival 
Period

Case 6
Departure 

Period
Arrival 
Period

Case 3
Departure 

Period
Arrival 
Period

Case 4
Departure 

Period
Arrival 
Period

Departure 
Period

Arrival 
Period

Case 1 Case 2
Departure 

Period
Arrival 
Period

 
Table 1. Flight Schedule for the Test Cases 

number of time periods, so that a 10% saving over 
one period becomes a 2/3 saving over 10 periods. 

Computational Experiments 
We programmed the model in Java JDK 5.0 

and used it to perform a series of experiments on a 
Linux server. The aim of the experiments was to 
compare the exact model with models incorporating 
flight prioritization and heuristic search. The latter 
models are expected to have a considerable 
advantage in computation time, but to yield 
solutions that are somewhat suboptimal. We sought 
to gauge the relative magnitude of these 
differences, and thereby assess the feasibility of the 
scenario-free approach to the SAGHP for real-
world scale problems. 

Experimental Design 
We experiment with six test cases. The test 

cases all have eight flights to release but each test 
case has a different flight duration mix, as 
described in Table 1. The arrival capacity transition 
matrix (Table 2) is fixed throughout the planning 
horizon of six periods and the initial capacity level 
is two flights per period.  

The flight duration is the same for all the 
flights in Case 1. Under this condition, the exact 
model and flight priority models are essentially the 
same. In this case, all models solve in about the 
same time (Figure 2), and arrive at the same 
optimal solution (Figure 3). As the mix of flight 
durations becomes more heterogeneous, 
computation time for the exact model increases 
dramatically, while remaining essentially constant 
for the priority models.  The use of priority 
ordering reduces computation time 87% with two 
flight durations (Case 2), and 97% when there are 
four durations (Case 6). Not surprisingly, the LGF 
and RBS priority scheme exhibit similar 
computation times for each case, although RBS is 
consistently somewhat faster to solve. 
from \ to 2 3 4

2 0.4 0.4 0.2
3 0.2 0.6 0.2
4 0.2 0.4 0.4  

Table 2. Capacity Transition Matrix for 
Experiments 

On the other hand, optimal total delay costs 
computed by the priority models are not much 
higher than that obtained using the exact model. In 
fact, in every case one of the priority models arrives 
at virtually the same optimal cost as the exact 
algorithm. Among the six test cases, the biggest 
deviations from the exact optimal cost due to LGF 
and RBS are 29% (RBS, Case 3), 33% (RBS, Case 
4), and 32% (LGF, Case 5). There is no clear 
pattern concerning the relative sub-optimality of 
LGF and RBS.  
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Figure 2. Computation Time with and without 
Priority Orderings of Flights 
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Figure 3. Optimal Total Delay Cost with and 
without Priority Ordering of Flights 
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In brief, we experimentally confirmed the 
effectiveness of priority ordering in reducing 
computation time as the heterogeneity of the flight 
durations increases. At the same time, we found 
that the loss in the quality of solution was never 
very large, and negligible for at least one priority 
scheme, in every one of our six test cases.  

Heuristics 
In Section 3, we proposed two heuristics, H1 

and H2, to further reduce the computation required 
to implement priority ordering schemes. These 
heuristics are devised to find the optimal number of 
flights to hold when there is a prioritization scheme 
in effect. In this subsection, we investigate the 
effect of these heuristics when used in conjunction 
with LGF and RBS prioritization. 

We continue the use of the six cases 
introduced in the previous section. Figure 4 shows 
the computation time results from using heuristics 
H1 and H2 with each of the two prioritization 
schemes. Consistently, heuristic H2 takes less time 
than heuristic H1, and heuristic H1 takes less time 
than the original priority model. Heuristic H1 
reduces computation time 58-86% for LGF, 59-
82% for RBS. Savings using H2 increase to 75-
99% and 75-94% respectively. The effects of the 
heuristics are least under Case 1. This is probably 
because the cost-to-go function is convex in this 
case, and it takes longer, on average, for the 
heuristics to find an optimum when only one such 
optimum exists. 

The total delay cost obtained from the 
heuristics is exhibited in Figure 5, which presents 
this cost as a percentage of the optimal cost 
computed by the exact algorithm. As expected, all 
the algorithms arrive at the same solution for Case 
1. For other cases, the costs obtained from the 
heuristics exceed the optimal cost to varying 
degrees. Generally, however, the difference is 
slight. Moreover, the larger differences (in Cases 3, 
4, and 5) are mostly caused by the adoption of the 
priority ordering scheme rather than the heuristics 
per se. The only appreciable penalty from using H1 
is in RBS Case 4, in which the prioritization causes 
a 33% cost increase which H1 takes up to 40%. H2 
does slightly worse in this case, yielding a cost 44% 
over the true optimum. H2 also performs relatively 
poorly in RBS Case 3, increasing the cost 49% over 
the original solution, as compared to the 29% 
increase with priority ordering without heuristic. 
On the other hand, across these six cases, the 
heuristics do not lead to any cost overage when 
used with LGF prioritization. 

In sum, the heuristics reduce computation 
time by 40% to 99% in our numerical experiments. 
Between heuristics H1 and H2, H2 reduces the 

computation time more dramatically but is 
somewhat more likely to incur a cost penalty. In 
these test cases, the heuristics lead to the same 
optimal solution when the LGF priority rule is used, 
but sometimes lead to actions that are more costly 
when the RBS priority rule is used. Another pattern 
suggested, albeit far from conclusively, from these 
results, is that the cost penalties from heuristic use 
are highest in the cases where the penalties from 
using priority ordering are also highest. While these 
initial results are promising, more extensive testing 
and analysis is required before the heuristics can be 
recommended for real-world application. 
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Figure 4. Computation Time with and without 
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Figure 5. Impact of the Heuristics on the Best 
Total Delay Cost 

Real-world Application 
The six cases above are small scale problems 

formulated so that they cane be solved fairly 
quickly by all models, including the exact model. In 
this subsection, we investigate the computational 
feasibility of solving a real-world problem using 
our model and algorithms. For this investigation, 
we first identify a real-world problem as our target 
problem and then use our algorithm to determine 
the optimal policy for the SAGHP.  
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Our case is based on San Francisco 
International Airport (SFO) on the day of March 2, 
2006. In general, SFO has a relatively high 
proportion of arrivals subject to ground holds, and 
March 2006 was a month in which ground holding 
at SFO was particularly common (Table 3). We 
chose March 2 as a representative day within that 
month, because it had the median proportion of 
ground-held flights (Table 4). 
Month Number of Arrivals Arrivals with EDCT % of Arrivals with EDCT
January 13484 1419 10.52%
February 11513 1556 13.52%
March 13102 2864 21.86%
April 12889 2520 19.55%
May 12872 824 6.40%  
Table 3. Arrival Data at SFO for year 2006 from 
FAA ASPM Database 
Date Number of Arrivals Number of Arrival with EDCT % of Arrivals with EDCT
3/7/2006 427 8 1.87
3/6/2006 426 9 2.11
3/14/2006 423 9 2.13
3/9/2006 437 12 2.75
3/25/2006 395 24 6.08
3/22/2006 439 60 13.67
3/13/2006 429 60 13.99
3/15/2006 429 68 15.85
3/17/2006 442 85 19.23
3/21/2006 427 101 23.65
3/2/2006 427 115 26.93
3/27/2006 425 123 28.94
3/12/2006 413 120 29.06
3/20/2006 430 149 34.65
3/29/2006 430 158 36.74
3/10/2006 432 182 42.13
3/30/2006 425 183 43.06
3/5/2006 393 248 63.1
3/28/2006 408 264 64.71
3/31/2006 440 285 64.77
3/16/2006 414 293 70.77
3/24/2006 425 308 72.47  
Table 4. Arrivals with EDCT in March, 2006 at 
SFO 

From the airport data on March 2nd, we 
observe nearly continuous capacity shortage 
(arrival demand greater than AAR) from 8:45am to 
1:15pm. In addition, most of the flights scheduled 
to arrive in this period have scheduled departure 
time from 7am to 12pm. Hence, for this target 
problem, we include flights with scheduled 
departure time from 7am to 12pm inbound to SFO. 
The planning horizon is set for seven hours in total 
(7am to 2pm).  The airport data indicate that the 
arrival capacity at SFO on that day was around six 
to seven aircraft per quarter hour across the entire 
planning horizon. According to the flight schedule, 
28 of the flights arriving in between 9am to 2pm 
originate from foreign airports. To account for the 
exemption of the international flights in the 
SAGHP, we simplify by reducing the arrival 
capacity level and assuming a constant capacity 
transition matrix throughout the planning horizon 
(Table 5) with initial arrival capacity level at 5. 
Though the matrix is a simplification, a 3-by-3 
capacity transition matrix nevertheless reflects the 
real airport situation. The weather condition at an 
airport is categorized as VFR, MVFR (marginal 
VFR), or IFR based on the visibility and ceiling 
conditions. For the same runway configuration, the 
capacity level is a function of the weather 
condition. Therefore, it is reasonable to consider 

three possible capacity levels due to the three 
primary weather conditions. Excluding the 
international flights, there are 116 flights departing 
between 7am and 12pm. We consider these 116 
flights in the target problem (Table 6). 
from \ to 5 6 7

5 0.4 0.5 0.1
6 0.3 0.4 0.3
7 0.2 0.3 0.5  

Table 5. Transition Matrix for the Target 
Problem 
Departure Hour Departure Quarter Number of Flights Flight Duration

7 1 6 3 5 8 15 17 17
7 2 6 5 6 7 7 11 5
7 3 8 4 6 6 8 9 11 16 21
7 4 8 4 5 5 5 5 8 8 18
8 1 6 3 5 17 17 17 17
8 2 6 5 5 5 6 9 26
8 3 2 12 25
8 4 3 7 7 25
9 1 6 2 3 4 5 5 6
9 2 10 4 6 6 6 7 7 8 11 20 23
9 3 5 2 3 16 17 17
9 4 3 5 6 6

10 1 12 4 4 4 5 6 7 7 7 8 8 18 20
10 2 2 6 6
10 3 5 5 6 6 10 21
10 4 2 2 4
11 1 8 5 5 5 6 6 7 18 18
11 2 4 8 11 25 25
11 3 8 4 4 5 6 6 7 13 24
11 4 6 3 5 5 6 8 8  

Table 6. Scheduled Flights in the Target 
Problem 

We solve the target problem with heuristic H2 
on the Linux server and present the computational 
results in Table 7. The algorithm reached a slightly 
lower optimal cost but had a much longer 
computation time with RBS priority ordering. But 
even with RBS, the computation is completed in 20 
seconds—well within the acceptable range for real-
world application. 

On the other hand, it took more than two 
hours for the algorithm with heuristic H1 to solve 
this target problem using LGF. This is not 
surprising since, as discussed above, the modest 
savings from using time heuristic H1 in a given 
time period grow exponentially with the number of 
time periods. For a realistic scale problem, this 
difference is sufficient to make H2 the only feasible 
heuristic for our computing resources.  

LGF RBS
Number of Decision Nodes 156301 415228
Optimal Expected Total Delay Cost 26.43 25.87
Computation Time (milliseconds) 2324 19741

Priority Ordering

 
Table 7. Computational Results for the Target 
Problem 

Conclusion 
In this paper, we have investigated the use of 

sequential decision models to optimize ground 
holding decisions in the context of the single airport 
ground holding problem. We formulated the model 
using a dynamic program and solved it with a value 
iteration algorithm. As far as we know, this is the 
first scenario-free model that can provide a 
dynamic optimum for the SAGHP.  
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From complexity analysis, we recognized the 
need to explore computational strategies so as to 
manage the curse of dimensionality of dynamic 
programming. Firstly, we observed numerous 
overlapping subproblems in the dynamic program, 
and chose to memoize the top-down recursive 
algorithm instead of using the traditional bottom-up 
approach. Memoization cuts down computation 
time dramatically and provides the same optimal 
solution.  

Next, we explored several strategies that can 
reduce computation time but may result in 
suboptimal solutions. From the algorithmic 
complexity, we observed that priority ordering 
among flights could reduce the computational load 
significantly. We proposed two priority ordering 
schemes, and found that they could help reduce the 
computation time greatly while providing solutions 
that were nearly optimal in our test cases. 
Additionally, the structural property of the cost-to-
go function inspired us to devise heuristics for 
limited search. We found the heuristics helpful in 
further reducing computation time while only 
slightly reducing solution quality. Schematically, 
our exploration of computational strategies for this 
computationally intense problem can be 
summarized by Figure 6. 

As a proof of concept, we demonstrated the 
computational feasibility of our model and 
algorithm for solving a typical real-world SAGHP. 
We found that the problem can be solved within an 
acceptable time for real-world application. In this 
real-world example, the model, in fact, planned for 
trillions of capacity scenarios. This quantity is 
clearly out of the capacity of the integer 
programming solvers today, and demonstrated an 
advantage of the scenario-free modeling approach. 
However, it is not clear by how much the 
computational strategies compromise the quality of 
solution. The comparison of the performance of the 
scenario-based model and the scenario-free model 
in a real-world setting is the topic of our on-going 
research. 

Computation Time

Suboptimality

Brute-force Dynamic Programming

DP with Memoization

Priority Ordering

Priority Ordering w/ Limited Search

 

Figure 6. Effect of Computational Strategies 
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