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Abstract–Airport service vehicles, such as luggage
trailers and passenger buses, service an aircraft af-
ter the aircraft arrives and before it departs. The
timely arrivals of these vehicles help ensure efficient
use of airport resources. This research investigates
algorithms for scheduling airport service vehicles. A
mixed integer linear program is proposed, minimiz-
ing service provider fuel costs and air carrier delays.
The formulation of the integer programming problem
is modified to aid solution search strategies. A ge-
netic algorithm heuristic borrowed from aircraft ar-
rival scheduling is introduced for finding approximate
solutions relatively quickly, in addition to an exact so-
lution method making use of branch and bound tech-
niques specially designed for this problem. The vari-
ous algorithms are tested using simulations of service
provider dispatch problems at Hamburg and Dallas-
Fort Worth Airports. Results show that plan based
service vehicle scheduling reduces both delay and fuel
costs over passive strategies, often 20% or more. The
genetic algorithm based heuristic also reduced delay
and fuel costs while incurring computational burdens
significantly below those of the optimal search strat-
egy.

Keywords-airport surface; scheduling; service vehi-
cles; decision support tools; vehicle routing;

I. Introduction

Service vehicles approach aircraft that land at an air-
port and are parked at a gate or stand, as shown in Fig.
1. The quantities of vehicles, fuel, and employees, that
an airport service provider utilizes in meeting demands
for service from arriving and departing aircraft are de-
termined by the demands and by how the demands are
met. Determining how to meet a set of demands is a
scheduling problem and will be addressed in this paper.

Airport service vehicle schedules determine how much
delay aircraft absorb waiting for service on airport sur-
faces. Gate and stand positions are in short supply at
many airports and delay incurred here by one aircraft can
delay subsequent aircraft that might have used the posi-
tion. An analysis of operational data in [1] revealed that
“for most airports there is a dominance of the delays due
to gate congestion (gate occupied) over the other delay
categories such as ramp and field congestion.” Different
processes at airports are related (by reliance on ground
support vehicles for example) and delays can propagate
from one gate or stand to others. The reader is again
referred to [1], which contains a subsection entitled “In-
terdependence between gates.” Indeed the entire air
transportation system is linked and an aircraft delayed
at one airport may disrupt schedules at other airports
it arrives at later in that day. To limit delays to the
traveling public, it is essential that service be provided in
an efficient manner on airport surfaces.

It is for the reasons noted above that the Deutsches
Zentrum für Luft- und Raumfahrt (DLR), with partners
from industry, national service providers, research insti-
tutions, and universities, initiated the Car Management
on Aprons (CARMA) project. CARMA will examine
the technical feasibility of implementing a cost-effective
system at Hamburg airport to track and communicate
with airport service vehicles, manage vehicles from stake-
holder control centers, and support efficient turnaround
processes for aircraft.

The next section provides background on airport ser-
vice vehicle scheduling. The following section introduces
a general framework and a few specific methods for solv-
ing dynamic and static airport service vehicle scheduling
problems. Computational studies simulating service ve-
hicle scheduling problems at Hamburg and Dallas-Fort
Worth Airports follow.

Figure 1. Ground support vehicles in operation. (Photos courtesy of Yves Günther, DLR.)



II. Background

There is a relatively small body of research relating to
the operations of airport service vehicles, in part due to
the ownership of these vehicles. In Europe, airport man-
agement organizations and private companies predomi-
nate, while in the United States, airlines manage much
of their own services. Government research organizations
studying aviation systems have focused mainly on opera-
tions managed by public agencies.

Research on service vehicle operations to date has
been framed around the turnaround processes of aircraft.
Reference [1] includes operational diagram of the turn-
around process. The authors broke down the states of
aircraft during the turnaround process into states that are
and are not observable to air traffic controllers. The lack
of full transparency prevents immediate recognition of de-
lay creation. Reference [2] speaks, in general terms, of
how a gate management system linked to ground support
operational data could provide feasible pushback times
for aircraft, necessary for departure planning. Reference
[3] studies the uncertainty surrounding when turnaround
processes finish. The authors find that even with knowl-
edge of the status of several service tasks it is difficult
to predict how much delay aircraft will incur. “As an
expected pushback time approaches, the absence of ex-
pected status changes (e.g., the end, or even the start, of
the boarding process) indicates that the turn is likely to
be late, but the exact degree of lateness becomes very dif-
ficult to predict” [3]. The data the authors analyzed came
from the ALLEGRO project, an effort led by Lufthansa
to study and improve the efficiency of ground operations
[4]. ALLEGRO is operational at Hamburg Airport and
DLR researchers working on the CARMA project have es-
tablished a link with Lufthansa. In a presentation on the
ALLEGRO project, Treude detailed the turnaround pro-
cess [4]. In this description, Treude defined the different
tasks that different service providers have to accomplish
and how progress can be measured.

Treude and the other authors referenced above, did
not model decision-making by service providers. Doing so
may provide insight on how airport service vehicle opera-
tions may be made more efficient, reducing delay aircraft
absorb and costs service providers accrue. In particular,
in this paper the focus is on scheduling for service vehicles.

There is a sizable amount of relevant research relating
to vehicle scheduling. Reference [5] proposed a heuristic
solution methodology for vehicle scheduling that involved
ordering tasks/customers by earliest possible service start
time and then inserting these tasks/customers one by one

into vehicle paths in a greedy fashion. In the same year,
[6] introduced an approach that first clustered close cus-
tomers together and then chose routes through the clus-
ters of customers. More recently, [7] introduced a tabu
search heuristic for one formulation of a multi-vehicle
routing problem. Reference [8] also introduced an ex-
act solution strategy based on using a branch-and-cut
methodology with new valid inequalities for relaxed prob-
lems.

The research described above solve ‘static’ formula-
tions where all parameters are known accurately and pro-
vided ahead of time. In ‘online’ or ‘dynamic’ formulations
customer service requests appear and must be added to
vehicle routes in real-time. A few works including [9]
and [10] have looked at the single-vehicle version of this
problem. Significantly fewer works have investigated the
multi-vehicle version of this problem, notably [11]. The
two most common strategies proposed for the online prob-
lem are ‘plan at home’ and ‘integral/break.’ The first
strategy involves each vehicle serving a set of customers
and then returning to a central depot, at which point the
vehicle is assigned another set of customers to serve. The
second strategy involves vehicles being given a route to
follow until a specified amount of time has elapsed, at
which point a new route will be created. Reference [12]
has investigated multi-vehicle problems that lie between
the static and the dynamic cases. In this work customers
have ‘disclosure dates’ when their location and desire for
service become known to the vehicle dispatcher.

Certain characteristics differentiate the problem of air-
port service vehicle scheduling from previously studied ve-
hicle routing problems. Service vehicles typically do not
return to any central depot, or other common location,
until the end of the working day. It is often impossible to
set aside parking space anywhere near the center of busy
airport surfaces. Service providers must plan routes that
involve spending varying amounts of time at customers’
locations (parked aircraft) and cannot serve multiple cus-
tomers at once. The problem investigated in this paper
involves managing a fleet of service vehicles with complete
knowledge of which aircraft have to be serviced, but an
incomplete knowledge of when and where these aircraft
will be requesting service or precisely how long it will
take to service aircraft. Available data are updated over
time, so that a dispatcher likely knows quite precisely de-
mands for service for the next fifteen minutes but not so
precisely those of the next five hours. It is believed that
the characteristics of the airport service vehicle schedul-
ing problem listed above may be common to a variety of
vehicle routing and scheduling problems.



III. Framework

A framework for airport surface vehicle scheduling is
introduced here. At the heart of this model is a schedul-
ing algorithm. The algorithm receives parameter values
from an operational model, and is alerted when vehicle
operations deviate from the algorithm’s planned sched-
ule. Examples of parameters that may be used include
times at which aircraft will require service, lengths of time
aircraft will take to service, numbers of different types of
service vehicles required, and distances between locations.
The operational model takes as input static and dynamic
sets of data. Static data of interest may include a map
of the airport surface with gate and stand locations, as
well as descriptions of aircraft and service vehicle types.
Dynamic data of interest includes aircraft flight numbers,
aircraft tail numbers, aircraft types, stand or gate as-
signment, estimated times of arrival at runways, terminal
assignment, passenger counts (when available), aircraft
status, and estimated in and off block times.

Expert guidance helps define the operational model,
as does analysis of service provider data. This data may
include timestamps when vehicles accepted tasks, were
in position, began tasks, and finished tasks. All of the
data mentioned above are currently available to the ser-
vice provider at the Hamburg Airport working with the
CARMA project. These data are likely also available to
air traffic controllers and airlines across Europe and the
U.S., although it is not clear if it is always shared with
service providers. This work provides some indication
of what could be accomplished if such information were
used to support service vehicle scheduling. A chart of the
framework introduced here is shown in Fig. 2.
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Figure 2. Flow chart of data for scheduling.

A. Dynamic Scheduling

The focus in this paper is placed primarily on schedul-
ing algorithms used in the above context. To simplify
analysis, a problem involving the management of a fleet of
homogeneous vehicles is considered. A number of aircraft
are requesting service at various times and locations over
the course of a day. The problem is to plan a schedule for
a fleet of vehicles such that each aircraft is serviced by a
vehicle at, or after, the time the aircraft requests service.
Parameters used by scheduling algorithms are defined as
follows.

Let I represent the set of all aircraft that will require
service and X represent the set of all service vehicles. The
service vehicles travel with an assumed and fixed velocity
V . Each aircraft i ∈ I has a time at which it is expected
to request service, Ti, and an amount of required service
time, Si. For any i, j ∈ I, Di,j is the distance a service
vehicle will have to travel going directly from finishing
servicing aircraft i to getting into position to service air-
craft j. Note that for buses carrying passengers between
terminals and stands Di,j does not necessarily equal Dj,i.
Also, for any x ∈ X, i ∈ I let Dx,i be the distance vehicle
x will have to travel to go from its current location to
a position where it is ready to service aircraft i. Let Fx

represent the time that vehicle x becomes idle, following
the schedule currently set. Finally, let C represent the
current time and Π the set of aircraft that have not yet
been assigned to a service vehicle.

It will be assumed that the parameters T , S andD will
be updated based on the dynamic data link previously
discussed, while F , C, and Π are updated by proposed
scheduling algorithms. To reflect uncertainty in aircraft
on or off block times, durations of tasks, or vehicle transit
times, it may be necessary to add buffers to T , S, and/or
D variables respectively.

Initial discussions with one service vehicle dispatcher
at Hamburg Airport provided insight into current opera-
tions. The dispatcher monitors regularly updated airport
data regarding arriving and departing aircraft. When an
aircraft is approximately ten minutes away from request-
ing service, the dispatcher asks the vehicle that has been
idle the longest to go immediately to a position where it
can provide service to the aircraft. If no vehicles are idle,
the dispatcher waits until the first vehicle becomes idle
and then assigns this vehicle this task. (The dispatcher
does not have easy access to data regarding the locations
of aircraft and service vehicles.) Assuming the dispatcher
examines data once per minute, current operations may
be modeled as follows.



Algorithm 1: Current operations
1. C ← 0
2. Fx ← 0 for all x ∈ X
3. Π ← I
4. REPEAT
5. UPDATE T , S, and D
6. For all i ∈ Π
7. If Ti ≤ C + 10 and min Fx ≤ C
8. ASSIGN vehicle x′ = arg min Fx

to service aircraft i
9. Fx′ ← C + Dx′,i

V + Si

10. Π ← Π\{i}
11. WAIT one minute
12. C ← C + 1
13. UNTIL Π = ∅

Knowledge of the locations of aircraft and service ve-
hicles is useful in planning efficient vehicle schedules and
in reducing delay. A new algorithm could take advantage
of this extra information, modifying Algorithm 1 by as-
signing tasks to service vehicles that are closest geograph-
ically rather than those that have been idle the longest.
This algorithm is presented below as Algorithm 2. It is
labeled “Greedy approach” as the algorithm is always act-
ing greedily to minimize delay and distance traveled, pick-
ing the shortest immediately available distance to travel
to service an aircraft.

Algorithm 2: Greedy approach
1. C ← 0
2. Fx ← 0 for all x ∈ X
3. Π ← I
4. REPEAT
5. UPDATE T , S, and D
6. For all i ∈ Π
7. If Ti ≤ C + 10 and min Fx ≤ C
8. ASSIGN vehicle x′ = arg min

x:Fx≤C
Dx,i

to service aircraft i
9. Fx′ ← C + Dx′,i

V + Si

10. Π ← Π\{i}
11. WAIT one minute
12. C ← C + 1
13. UNTIL Π = ∅

The greedy approach is a relatively simple heuristic,
and will not always produce very good schedules as mea-
sured in terms of vehicle travel distances or aircraft ser-
vice delays. It will produce poor results, for instance, if,

ten minutes before an aircraft requires service, all idle
vehicles are far away but one vehicle very close to the
aircraft will become idle shortly. The algorithms intro-
duced so far are myopic and responsive, considering tasks
seriatim and only when required by an imminent aircraft
arrival or departure.

A proactive, plan-based approach considering future
demands offers benefits. The ‘plan at home’ strategy
employed in certain vehicle routing algorithms appears
poorly suited to this problem due to parking problems dis-
cussed earlier. A modified integral/break strategy ([10],
[11]) is used instead. Extensions to vehicle paths are
planned over short periods of time by solving static vehi-
cle routing problems. Here overlapping time windows are
allowed, so that planning may be done every 10 minutes
over a 60 minute planning horizon. This approach allows
a dispatcher to plan ahead without fixing assignments far
in advance, and is presented below as Algorithm 3.

Algorithm 3: Moving time window
1. C ← 0
2. Fx ← 0 for all x ∈ X
3. Π ← I
4. REPEAT
5. UPDATE T , S, and D
6. Ψ ← {i ∈ Π : Ti ≤ C + 60}
7. SOLVE static scheduling problem using data

regarding all x ∈ X and i ∈ Ψ
8. ASSIGN tasks for the next 10 minutes,

using results of step 7
9. For any vehicle x assigned to service aircraft i

at time z:
10. Fx ← z + Si

11. Π ← Π\{i}
12. WAIT ten minutes
13. C ← C + 10
14. UNTIL Π = ∅

The length of the planning horizon and the frequency
with which static scheduling problems are solved are vari-
ables to be set. In cases where uncertainty is relatively
small, it is worthwhile to plan over a longer horizon. This
appears to be the case at Hamburg Airport, where traffic
is largely comprised of short-haul flights and good data
are available regarding the status of arriving and depart-
ing aircraft. In cases where uncertainty is larger, it be-
comes important to reschedule more frequently and to
avoid planning far into the future based on imperfect es-
timates of in and off block times.



B. Static Scheduling

This section describes static scheduling for the moving
time window algorithm. Scheduling provides sequences of
tasks for service vehicles and a schedule of when tasks are
to begin. Decision variables common in route planning
are used here.

Let ax
i,j equal 1 if vehicle x serves aircraft j immedi-

ately after serving aircraft i, and 0 otherwise. Similarly
let ax

0,j , ax
j,0, and ax

0,0 be binary variables representing if
a vehicle x serves aircraft j before all other aircraft, after
all other aircraft, or if the vehicle serves no aircraft, re-
spectively. For notational convenience, let I+ = I ∪ {0}.
Let bi be the time at which service begins on aircraft i.

A new model parameter λ relates the two goals of
providing service to aircraft as quickly as possible and of
reducing travel distances for service vehicles. M is used
to create a linear formulation and can be set to any large
value. The problem can now be formulated as a mixed
integer linear program as shown below.

Minimize λ(
∑
i∈I

bi)+(1− λ)(
∑

x∈X

∑
i∈I+

∑
j∈I

Di,ja
x
i,j)

s.t.∑
x∈X

∑
i∈I+

ax
i,j = 1∑

j∈I+
ax
0,j = 1∑

j∈I+
ax

j,0 = 1∑
i∈I+

ax
i,j =

∑
k∈I+

ax
j,k

ax
i,j ∈ {0, 1}

bi ≥ Ti

bj ≥ (Fx + Dx,j

V )ax
0,j

bj ≥ bi + Si + Di,j

V −M(1− ax
i,j)

∀j∈I (1)

∀x∈X (2)

∀x∈X (3)

∀j∈I, x∈X (4)

∀i,j∈I+, x∈X (5)

∀i∈I (6)

∀j∈I, x∈X (7)

∀i,j∈I, x∈X (8)

The objective function minimizes a weighted sum of
aircraft service times and distances traveled by service
vehicles. Minimizing service times is equivalent to min-
imizing delay. Given the assumed constant velocity of
service vehicles, minimizing distances traveled is equiv-
alent to minimizing the time vehicles spend driving be-
tween aircraft. It would be straightforward to add a new
set of weights on service times of different aircraft, say
for a case involving shuttle operations which place a rela-
tively high value on reduced turnaround times (see [2]). It
would likewise be straightforward to limit delay incurred
by each aircraft, or bound the numbers of tasks assigned
to each vehicle.

Equation (1) ensures all aircraft are serviced. Equa-
tions (2) and (3) ensure all service vehicles begin and
end their service tours, respectively. Equation (4) is a
flow-balance constraint; if a vehicle arrives at an aircraft,
it must leave that aircraft next. Equation (5) ensures
tasks are either assigned or not assigned. Equation (6)
requires that service cannot begin before an aircraft is
ready. Equations (7) and (8) ensure service does not begin
before vehicles arrive at an aircraft, whether they travel
to the aircraft directly from their current location or after
servicing another aircraft.

Reference [8] notes that (8) can be rewritten:

bj ≥ bi + Si + Di,j

V −M(1−
∑

x∈X

ax
i,j) ∀i,j∈I (9)

Taking the summation across the set of service vehi-
cles reduces the number of constraints needed, taking ad-
vantage of the fact that an optimal solution assigns only
one vehicle to visit each aircraft. The same logic can be
applied to (7) as well. This formulation has the added
advantage of discouraging the selection of fractional vari-
ables when the problem is relaxed (removing the con-
straint that the ax

i,j variables be binary) and solved.

bj ≥
∑

x∈X

(Fx + Dx,j

V )ax
0,j ∀j∈I (10)

In any optimal solution, exactly one vehicle will visit
each aircraft exactly one time. This suggests summing
across service vehicles and potential vehicle paths. Com-
bining (7) and (8) while maintaining a linear problem
structure proves problematic since it is not clear a priori
when vehicles will service different aircraft. Nonetheless
it is possible to tighten (7), recognizing that aircraft can-
not be serviced before they are ready, as follows.

bj ≥
∑

x∈X

[
(Fx+Dx,j

V )ax
0,j +

∑
i∈I

(Ti+Si+
Di,j

V )ax
i,j

]
∀j∈I (11)

The authors believe (11) is new and offers a signifi-
cant improvement over (7). The number of constraints
required has been reduced, and the selection of fractional
variables has been discouraged.

There are |X|∗(|I|+1)2 binary variables in the prob-
lem stated above, so efficient solution search strategies
are required. A branch and bound strategy taking advan-
tage of problem structure is next introduced. A genetic
algorithm approach based on research in aircraft arrival
scheduling follows. These are two approaches for solving
the introduced mixed integer linear program.



C. Branch and Bound

A standard approach to solving mixed integer linear
programs is branch and bound, and a specialized form is
used here. This algorithm begins by using the greedy ap-
proach (or the genetic algorithm introduced later) to pro-
vide a good upper bound for the optimal objective func-
tion, critical in branch and bound. The static scheduling
problem is next relaxed and solved. If the solution assigns
binary values to all ax

i,j values, then an optimal solution
has been found.

Assuming a binary solution was not found, a partic-
ular aircraft i associated with at least one non-binary
ax

i,j (or ax
j,i) term is chosen. Branching is done by cre-

ating |X| new problems where the aircraft i is assigned
to each service vehicle x in turn. For each of these sub-
problems, ay

i,j and ay
j,i are set equal to 0 for any j∈I+,

for any y∈X, y 6=x. The new problems are each relaxed
and solved. Note that by branching on vehicle assign-
ment, (|I|+1)∗2∗(|X|−1) binary variables were set to 0.
A more standard approach branching on a particular ax

i,j

would have set one binary variable.

The upper bound is compared to the best objective
function value given by binary variables, and updated as
needed. The problem that was recently branched, prob-
lems with objective values greater than the upper bound,
and problems that produced binary solutions are said to
be pruned and ignored in the future. Problems that did
not produce integer solutions but did produce objective
function values below the upper bound are said to be live.
The live problem with the best objective function value is
next studied. This is what is known as ‘best first’ branch
and bound: high quality solutions are obtained, the upper
bound updated, and sub-optimal branches pruned rela-
tively quickly.

Branching is done as before, by assigning an aircraft
to different vehicles in turn, if possible. If all aircraft have
been assigned and fractional variables remain, a particu-
lar aircraft i associated with at least one non-binary ax

i,j

(or ax
j,i) term is chosen. Branching is now done by con-

sidering the path of vehicle x after servicing aircraft i.
|I| + 1 new problems are created where all j ∈ I+ are
chosen in turn, with ax

i,j set to 1 and ax
i,k set to 0 for all

k ∈ I+, k 6= j. Note that by branching on service vehicle
path, |I| + 1 binary variables were set. Again, a more
standard approach branching on a particular ax

i,j would
have set one.

After some time, all branches will have been pruned.
The upper bound has now been verified to be the optimal
objective function value, and the solution associated with
it defines the optimal service vehicle schedules. It is not
clear how long the branch and bound process will take,
but it is worth noting that the procedure outlined here
lends itself to parallelized computation.

D. Genetic Algorithm

Using a genetic algorithm, it is possible to compare
schedules and pick the best that can be found in a fixed,
short time. The approach presented here is based on a
heuristic originally proposed for aircraft arrival schedul-
ing by [13]. The key insight is that, as in arrival schedul-
ing, airport service vehicle scheduling can be broken down
into subproblems of aircraft assignment, sequencing, and
scheduling given sequencing instructions. Scheduling given
sequencing instructions is trivial. Service vehicles drive to
the first aircraft they are to service, service this aircraft
when both are ready, move on to the next aircraft to ser-
vice, and so forth.

Consider |I| random real numbers between 0 and |X|.
The string of numbers represents vehicle assignment and
sequencing instructions for the |I| aircraft, as will be ex-
plained. The |I| numbers form an individual in the lan-
guage of genetic algorithms. Table 1 shows an example
involving servicing 4 aircraft using 2 vehicles.

The ceiling of a number indicates which service vehi-
cle, indexed from 1 to |X|, services the associated aircraft.
For example, the numbers associated with aircraft 2, 3,
and 4 each have a ceiling of 2 indicating they are serviced
by vehicle 2. The ranks of the values of the fractional part
of each number represent priority in the order of tasks for
each vehicle. So for vehicle 2, aircraft 4 (1.31) is serviced
before aircraft 3 (1.48) which is serviced before aircraft 2
(1.63).

The logic of genetic algorithms is as follows: (1) choose
an initial population of individuals, (2) test the popula-
tion, (3) breed new individuals by combining and mu-
tating high performing members of the population, (4)
replace low performing members of the population with
the new individuals, and (5) return to step (2) unless cer-
tain termination criteria are met.

Here choosing an initial population involves generat-
ing numerous strings of numbers. Aircraft should be ser-
viced roughly in the order with which they demand ser-
vice to minimize delay, although adhering to this rule
strictly is unwarranted. Here, 20% of individuals’ se-
quencing information is taken from normalized times of

Aircraft 1 2 3 4

Individual 0.45 1.63 1.48 1.31

Vehicle
Assignment Vehicle 1 Veh 2 Veh 2 Veh 2
Ordering
Instructions 1st Task 3rd 2nd 1st

Table I. An individual (numbers in bold) with
vehicle assignment and sequencing instructions.



requested service, T (i) values. The other 80% have se-
quencing information given by T (i) values added to ex-
ponential random variables with the distributional pa-
rameter max(Ti−Tj)

16 and then normalized (as in [?]).

Testing the population involves scheduling given the
implied sets of instructions, and noting obtained objec-
tive function values. Combining individuals means sim-
ply taking the mean of values at each spot in each string.
Mutating any one individual likewise involves simply re-
placing any number in an individual with a randomly
generated number. Here the genetic algorithm runs, i.e.,
comparison of alternate schedules continues, until a cer-
tain number of generations have been evaluated, i.e., a
certain number of calculations have been made.

IV. Computational Studies

A. Hamburg Airport

Computational studies were run to test the various ap-
proaches to scheduling introduced here. Algorithms were
coded in C++, with branch and bound techniques for
solving static scheduling problems using the Open Solver
Interface1 calling the glpk solver2. The software used is
efficient and open source. The first set of studies modeled
the operation of passenger buses at Hamburg Airport,
home of the CARMA project. Fig. 3 shows the apron
and terminal areas at Hamburg Airport, areas modeled
in the computational studies presented here. Buses carry
passengers both from gates in Terminals 1 and 2 at right
to aircraft at stand positions 51-73 at left and vice-versa.

Figure 3. Apron and terminals at Hamburg Airport.

1Information about the Open Solver Interface is available at
https://projects.coin-or.org/Osi.

2Information about glpk is available at
http://www.gnu.org/software/glpk/.

Two hundred scenarios were created, each modeling
typical service vehicle dispatch problems at Hamburg Air-
port involving servicing seventeen aircraft using six pas-
senger buses over the course of an hour. Model parame-
ters were set using data from a previous effort of Airbus in
association with the CARMA project. Each scenario was
given to the scheduling algorithms, with both branch and
bound and the genetic algorithm heuristic used to solve
static problems. Note that there are 617 (1.69 x 1013)
ways to assign aircraft to service buses, and as many as
17! (3.56 x 1014) ways to sequence tasks after aircraft
assignment.

The parameter λ from the objective function of the
mixed integer linear program was set equal to 0.9, equat-
ing one minute of delay absorbed by an aircraft with nine
kilometers of service vehicle travel. It is unclear how sen-
sitive results are to the parameter λ. Future research
could study this sensitivity or look for a socially opti-
mal schedule, setting λ based on marginal social costs of
a minute of delay absorbed by an aircraft (factoring in
potential delay propagation) and a kilometer of service
vehicle travel.

Fig. 4 shows histograms of delay absorbed by the sev-
enteen aircraft and distance traveled by the six passenger
buses when scheduling using the different algorithms in-
troduced in this paper. There were many instances where
delay was zero minutes, indicating no aircraft were de-
layed waiting for a passenger bus.
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Planning vehicle routes intelligently significantly re-
duces the distance passenger buses have to travel. Mean
distance traveled per scenario, for the set of all service
vehicles, was 42.4 kilometers under current operations. It
was 37.8 across the same set of scenarios using the greedy
approach, a savings of around 10 percent. Mean distance
traveled was 34.9 when using the genetic algorithm, a sav-
ings of around 20 percent, and 24.8 when using branch
and bound, a savings of 40 percent. While the absolute
differences in distances traveled may appear small, keep
in mind that service providers will face dispatch prob-
lems of the type modeled here several times a day. The
cumulative costs of inefficient schedules and fuel costs for
a service provider even at a relatively small airport can
be significant.

The delay aircraft had to absorb was reduced as well.
Mean delay per scenario went from 6.2 minutes under cur-
rent operations to 5.6 using the greedy approach (roughly
-10%). Mean delay was 2.5 minutes when using the ge-
netic algorithm, (-60%), and 1.3 when using the branch
and bound approach (-80%).

Looking at Fig. 4, there is significant variation in delay
and distance traveled within each of the sets of schedules
generated by any one scheduling algorithm. This varia-
tion is caused by variation in aircraft arrival and depar-
ture schedules. Seventeen aircraft requesting service over
the course of an hour may or may not pose a problem for
a fleet of six service vehicles, depending on exactly when
and where the aircraft request service.

The objective function values less the value when us-
ing optimal scheduling, multiplied by ten, provides a met-
ric of schedule inefficiency in minutes of delay and kilo-
meters of vehicle travel. Fig. 5 shows the mean, across
scenarios, of schedule inefficiency and computation time
using different scheduling approaches. A green triangle
marks the performance of current operations, a purple
square marks the greedy algorithm, and a red circle marks
branch and bound (generating the optimal schedules with
no schedule inefficiency by definition). A trail of blue x’s
tracks the performance of the genetic algorithm heuristic.
The performance of the best schedules found at genera-
tions 1 and 400 are highlighted. The genetic algorithm
surveyed a population of 10,000 possible schedules over
400 generations of 100 births.

Note that the genetic algorithm heuristic is relatively
quickly able to generate efficient schedules. In genera-
tion 1, ten thousand random perturbations of the sched-
ule provided by the greedy algorithm were studied. This
took a few seconds, but often provided a schedule signif-
icantly more efficient than those provided by the passive
algorithms introduced first in this paper. Once the ge-
netic algorithm was initiated, progress was slow and the
algorithm often failed to find better schedules even when
the optimal schedule had not yet been found.
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Figure 5. Computational burden and schedule quality.

Fig. 5 shows the mean computation times taken by the
various algorithms. One difficulty in using an optimal so-
lution search strategy like the specialized form of branch
and bound used here is that the upper bound on how
long an algorithm may take to find an optimal schedule
is unknown or very large. In the two hundred trials run,
the branch and bound algorithm one time took a little
over eleven minutes and another time took almost three
minutes to find an optimal schedule. Also note that the
computational burden of the genetic algorithm approach
will scale much better than the branch and bound ap-
proach as problem size increases.

B. Dallas-Fort Worth Airport

Next, a set of studies was constructed to simulate
service vehicle scheduling problems at a geographically
larger and busier airport. Dallas-Fort Worth Interna-
tional Airport (DFW) is remarkable both for its size and
its high volume of traffic. Distances between gates at
DFW are often much greater than at Hamburg Airport.
While DFW does not make extensive use of passenger
buses, there are plenty of service vehicles including fuel
trucks and luggage trailers that require scheduling.

As for Hamburg Airport, scenarios were created sim-
ulating operations at DFW. Gate locations and aircraft
demand sets were obtained by analyzing data from the
Surface Management System at DFW. In 100 scenarios,
1,000 aircraft requested service from 25 service vehicles
over the course of 1,080 minutes (18 hours). Branch and
bound techniques for optimally solving static scheduling
problems were not used, as computation times and mem-
ory requirements posed practical problems. Fig. 6 shows
histograms of delay absorbed by the aircraft and distances
traveled by the service vehicles.

As in the Hamburg Airport study, the distance service
vehicles had to travel was significantly reduced. Mean
kilometers traveled were reduced roughly 50% when go-
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Figure 6. Scheduling 25 vehicles at DFW.

ing from current operations to either a greedy approach
or genetic algorithm based scheduling. The genetic algo-
rithm approach reduced mean distance traveled per day
about 300 kilometers when compared to the greedy ap-
proach. While this is a relatively small amount, the ben-
efits of saving 300 kilometers of travel per day can be
significant for an airport service provider. Mean delay
absorbed by aircraft was reduced 20% when going from
current operations to the greedy approach and 25% when
going to the genetic algorithm approach.

A sensitivity study was next performed, investigating
how delay and distance numbers change as the number of
service vehicles changes. Information from such a study,
together with knowledge of the costs of employing vehi-
cles and drivers, could be used to plan vehicle fleet size.
The study that generated the results shown in Fig. 6 was
replicated eleven times, adjusting fleet size from 20 to 30
vehicles. Fig. 7 shows box-plots of distances service vehi-
cles traveled plus delay aircraft absorbed as a function of
vehicle fleet size.

Fig. 7 shows that the distance travelled by all service
vehicles decreases as the number of vehicles increases,
when using genetic algorithm based scheduling but not
under current operations. This indicates that the benefits
of intelligent scheduling increase alongside the number of
vehicles being scheduled. There are diminishing returns,
so that the delay and travel distances saved when going
from using 29 to 30 vehicles are lower than those saved
when going from 20 to 21 vehicles.
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Figure 7. Box-plots of distance and delay vs. fleet size for
current operations and genetic algorithm scheduling.

V. Conclusion

The problem of defining schedules for airport service
vehicles is introduced in this paper. A framework for
addressing such problems is formulated. Algorithms for
scheduling are introduced, including one based on solving
static vehicle scheduling problems within a moving time
window. A novel formulation of such problems is intro-
duced, and complemented by a specially designed branch
and bound solution search strategy. Similarities between
the airport service vehicle scheduling problem and the air-
port arrival scheduling problem are noted, and a genetic
algorithm heuristic designed for the latter is modified to
solve the former. Results of computational studies simu-
lating service vehicle scheduling at one European and one
American airport are presented.

Results show significant benefits from planning ser-
vice vehicle routes based on future demands as opposed
to waiting to react to demands as they arise. Both de-
lay absorbed by aircraft and distances traveled by service
vehicles can be reduced by 20% or more. Additional re-
search that examines the sensitivity of results to model
parameters would be worthwhile. Further research is also
needed to test uncertainty in airport arrival and depar-
ture schedules, and how this uncertainty impacts service
vehicle scheduling. Service vehicles can be a significant
source of delay in airline schedules and it is hoped that
this paper spurs research interest in airport service vehi-
cle operations.
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