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Abstract— A comprehensive Tools Suite to allow for 
thorough evaluation of the environmental effects and impacts 
of aviation is currently being developed by the U.S. This suite 
consists of the Environmental Design Space (EDS), the 
Aviation Environmental Design Tool (AEDT), and the 
Aviation environmental Portfolio Management Tool (APMT). 
A key priority is that environmental analyses are informed 
with the associated uncertainty from the tools, inputs and 
assumptions used in the analysis process.  As part of the 
development of the Tools Suite, an assessment of each tool 
and a system-wide analysis of the entire suite are being 
undertaken.  This assessment includes sensitivity to inputs 
and fidelity analyses that will provide an indication of 
uncertainty in analyses performed using the Tools Suite.  
Completion of the assessment and evaluation effort described 
herein is a key element of the development process. This 
paper presents a summary of the Tools Suite assessment and 
evaluation effort as it pertains to the AEDT component. 
AEDT takes detailed fleet descriptions and flight schedules 
and produces estimates of noise, fuel burn and emissions at 
global, regional and local levels. The AEDT component of the 
suite will be a publicly available regulatory tool within the 
U.S.  This paper conveys the work completed so far and 
provides some insight into some of the findings.
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I. INTRODUCTION

The U.S. Federal Aviation Administration (FAA) Office of 
Environment and Energy, in collaboration with Transport 
Canada and NASA, is developing a comprehensive suite of 
software tools that will allow for thorough assessment of the 
environmental effects and impacts of aviation. The main goal 
of the effort is to develop a new critically needed capability to 
characterize and quantify the interdependencies among 
aviation-related noise and emissions, impacts on health and 
welfare, and industry and consumer costs, under different 
policy, technology, operational, and market scenarios.

Figure 1 shows a simplified schematic of the Tools Suite. 
The three main functional components of the Tools Suite are: 

the Environmental Design Space (EDS), which estimates
source noise, exhaust emissions, performance and economic 
parameters for future aircraft designs under different 
technological, operational, policy and market scenarios; the 
Aviation Environmental Design Tool (AEDT), which takes as 
input detailed fleet descriptions and flight schedules, and 
produces estimates of noise, fuel burn and emissions at global, 
regional and local levels; and the Aviation environmental 
Portfolio Management Tool (APMT), which provides an 
economic model of the aviation industry and performs 
comprehensive environmental impact analyses following inputs 
from AEDT and EDS.

A key element of the FAA Environmental Tools Suite 
development program is the quantitative assessment and 
evaluation of the performance of the integrated Tools Suite 
relative to fidelity requirements and sensitivities to inputs and 
assumptions.  Assessment of the Tools Suite will:

 Provide sensitivity analyses of output response to 
uncertainties in inputs and assumptions, establishing 
procedures for future assessment efforts,

 Identify gaps in functionality that significantly impact the 

Figure 1. Schematic of the Components of the FAA Environmental Tools 
Suite
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achievement of the Tools Suite requirements, leading to 
the identification of high-priority areas for further 
development,

 Provide preliminary quantitative evaluation of the 
performance of the integrated Tools Suite relative to 
fidelity requirements for various analysis scenarios such as 
nitrogen oxide (NOx) stringency and future aircraft 
technologies, and

 Continue to contribute to the development of external 
understanding of the FAA Tools Suite capabilities.

To meet these objectives, there are four elements to the 
Tools Suite assessment program: (a) parametric sensitivity and 
uncertainty analyses, (b) comparisons to gold standard data (a 
benchmark that is regarded as the most reliable, representative 
and/or complete information available), (c) expert reviews, and 
(d) capability demonstrations/sample problems. This paper 
contains a summary of the assessment program and preliminary 
results of the uncertainty analyses for AEDT.

AEDT consists of an integrated set of common modules 
and databases used for conducting noise, emissions, and fuel 
burn analyses on a local (down to flight level), national, 
regional, and global scale. AEDT is a completely redesigned, 
integrated tool, which builds upon the requirements of the 
Integrated Noise Model (INM – local noise analysis), the 
Emissions and Dispersion Modeling System (EDMS – local 
and regional emissions analysis), Noise Integrated Routing 
System (NIRS – regional noise analysis), the Model for 
Assessing Global Exposure from Noise of Transport Airplanes 
(MAGENTA – global noise analysis) and the System for 
assessing Aviation’s Global Emissions (SAGE – regional and 
global emissions analysis). Consistent with the historic public 
release versions of the local noise and emissions tools, FAA 
plans to release a single, integrated version of the local analysis 
capabilities in 2011. 

Three main modules within AEDT have been assessed. 
These modules are the Aircraft Performance Module (APM), 
Aircraft Emissions Module (AEM), and the Aircraft Acoustic 
Module (AAM).  

II. ASSESSMENT PROGRAM OVERVIEW

In this section we present a set of Assessment Questions 
(AQs), which provide a structured framework in which the 
assessment is carried out. We then describe the various 
elements of the assessment, which range from formal 
uncertainty analyses to sample problems, expert review, and 
comparisons with gold standard data.

A. Assessment Questions

Through the assessment process, six questions were 
identified. A complete assessment of the tool requires each of 
these questions to be addressed. The questions are outlined 
below.

AQ1. (a) What are the key assumptions employed within 
the module? (b) How do these assumptions translate into 
quantifiable uncertainty in module outputs?

AQ2. (a) What are the key assumptions employed within 
the module databases? (b) How do these assumptions translate 
into quantifiable uncertainty in module outputs?

AQ3. (a) How do assumptions/limitations in modeling and 
databases impact the applicability of the module for certain 
classes of problems (technology infusion, stringency 
problems)? (b) What are the implications for future 
development efforts?

AQ4. (a) How do uncertainties in module inputs propagate 
to uncertainties in module outputs? (b) Further, what are the 
key inputs that contribute to variability in module outputs?

AQ5. For assumptions, limitations, and inputs where effects 
cannot be quantified, what are the expected influences 
(qualitatively) on module outputs?

AQ6. How do assessment results translate into guidelines 
for use?

These questions cover all aspects of the assessment 
assumptions and limitations in each module. AQ1 and AQ5 
reference sensitivity analyses. In addition, AQ4 addresses the 
issue of propagation of input uncertainty to model output.  To 
answer AQ2, AQ3, and AQ4, quantitative studies will be 
defined to determine how data assumptions translate into 
uncertainty in the module outputs and how those data 
assumptions limit the applicability of the module for certain 
classes of problems. When the other AQs have been answered, 
AQ6 can be addressed. 

B. Capability Demonstrations and Sample Problems

In designing and developing a model, including the 
associated databases, it is difficult to anticipate all of the 
applications that might be required of the model.  In fact, it is 
always expected that additional development will be necessary 
to be able to address new analysis areas that a model will be 
asked to address.  One way AEDT has introduced its 
capabilities to stakeholders is through sample problem and 
capability demonstration analyses. For AEDT, these efforts 
began with several iterations of a NOx sample problem [1] and
continued with sample problems and capability demonstrations 
analyses conducted by AEDT and with EDS and APMT.

C. Comparison to “Gold Standard” Data

AEDT is also being assessed by comparing the data 
computed to “gold standard” data. A “gold standard” is defined 
as a benchmark that is regarded as definitive. The most reliable 
and/or complete information at a given time is the gold 
standard. For example, in the case of greenhouse gas models, 
airline reported fuel burn has been the gold standard for 
assessing the performance of the APM within AEDT. 
Unfortunately, gold standard data in the aviation industry are 
often proprietary, non-existent, difficult and cost prohibitive to 
obtain, and/or too cumbersome to effectively incorporate into 
analytical models.

The AEDT global tools, SAGE and MAGENTA, were 
created through the International Civil Aviation Organization’s 
(ICAO) Committee on Aviation Environmental Protection 
(CAEP) process with validation as part of that process. For 



SAGE, a comparison was performed using a combination of 
computer flight data recorder information and airline-reported 
fuel burn data [2,3]. Similar validation activities occurred for 
MAGENTA. The AEDT local tools have also been compared 
to data to determine validity. Most of these comparisons were 
accomplished under the auspices of the Society of Automotive 
Engineers (SAE) A-21 Committee though efforts of validating 
the computational components of the INM and EDMS models.  
These results of these activities are documented in numerous 
international standards, including SAE-AIR-1845 [4], SAE-
AIR-5662 [5], and SAE-AIR-5715 [6], which is currently 
under development.

D. Expert Review Process

Another form of assessment for AEDT is through expert 
review. AEDT is being reviewed by multiple groups of experts. 
The development of AEDT was initiated by a series of 
stakeholder reviews conducted by the National Academy of 
Science’s Transportation Research Board.  The Academy’s 
review resulted in a clearly defined set of requirements upon 
which the fundamental design of AEDT has been based [7].  A 
follow-on stakeholder review meeting was conducted by the 
Academy in December 2006, which resulted in further 
refinements to AEDT development.  In addition, the AEDT 
development team continues to engage its stakeholders through 
periodic meetings of its Design Review Group (DRG), made 
up of members of government, industry, and academia from all 
around the world.  The DRG continues to provide input on 
AEDT requirements, and helps to refine the design of the 
integrated system.  

AEDT is also reviewed through ICAO’s CAEP.  AEDT 
review under the auspices of CAEP involves a three step 
process, which includes:  (1) thorough review and 
documentation of model capabilities, including an initial 
assessment of model readiness relative to anticipated CAEP 
analyses; (2) comparison of model performance with “gold 
standard” data; and (3) conductance of CAEP-centric sample 
problems. Part of the review and documentation of modeling 
capabilities in CAEP requires that the noise and performance 
computations of all models be compliant with the European 
Commission’s Standard DOC29[8]. To ensure DOC29 
compliance, a rigorous, flight-segment-by-flight-segment 
comparison of AEDT and other candidate models were 
compared with the standard to ensure compliance.  

E. AEDT Formal Parametric Sensitivity and Uncertainty 
Analyses

The AEDT formal parametric sensitivity and uncertainty 
analyses consist of a process of quantifying uncertainty and 
rank ordering the most important assumptions and limitations. 
This process culminates in an assessment report that serves as a 
roadmap upon which future AEDT model research and 
development is based. This process naturally facilitates a 
measurable approach on which to base future model 
investment. 

The first step of the AEDT parametric assessment process 
is the documentation of the assumptions and limitations (DAL). 
The DAL lists in specific detail the assumptions and 

limitations, how these assumptions and limitations affect the 
module, where they occur within the module, as well as a 
literature review of any validation and verification activities 
that have been accomplished in other related studies. The 
literature review also helps to define appropriate distributions 
for module input parameters. 

The next step of the AEDT assessment process involves 
defining a comprehensive set of sensitivity studies and Monte 
Carlo simulations that are performed to address each of the 
AQs. These sensitivity studies and Monte Carlo simulations are 
documented in an individual module assessment plan that 
guides the assessment team in conducting the parametric 
sensitivity and uncertainty assessments. The sensitivity studies 
and Monte Carlo simulations require the development of a 
surrogate model, which provides an approximation of the 
input/output behavior of the module it represents, but is less 
run-time-intensive. The use of surrogate models thus allows for 
tractable computation time for Monte Carlo simulations, which 
require hundreds to thousands of model evaluations. The 
surrogate models are vigorously assessed to ensure they 
correctly capture the AEDT model. The Monte Carlo 
simulations were used to complete three different analyses: a 
global sensitivity analysis (GSA), a local sensitivity analysis 
(LSA), and a distributional sensitivity analysis (DSA) as 
defined below. 

A Monte Carlo simulation is initiated by defining a 
probability distribution for each factor, which can either be a 
parameter describing an assumption or a module input. A 
random sample for each factor is drawn and run through the 
module, resulting in a set of outputs for that random sample. 
The cycle is performed hundreds to thousands of times, 
resulting in an ensemble set for each output that may be used to 
estimate means, standard deviations, confidence intervals, and 
other probabilistic information of interest.

A DSA uses Monte Carlo simulations to determine the 
sensitivity of the output response to the model factors on a 
one-at-a-time basis. For each factor, the distribution is altered, 
either by shifting the mean, increasing the standard deviation, 
or using an alternate probability distribution. The distributions 
of other input factors, besides the factor being investigated, are 
held constant.  A DSA is a critical component of module 
assessment in situations where certain factors do not have 
well-defined probability distributions.

To determine how model factors contribute to model 
output uncertainty, a GSA is conducted. For a GSA, all factors 
are varied during the Monte Carlo simulation. This allows for 
the calculation of an averaged global contribution to output 
variance from each factor, which includes all interaction 
effects among the different factors. That is, it includes any 
effects that occur by two or more factors directly affecting 
each other.  For this assessment, the Sobol’ method [9] was 
used to compute the average global contribution by computing 
a total sensitivity index (TSI). The TSI quantifies the impact 
an input and the distribution assigned to that input have on the 
variance of a specific output, and is given as the ratio of the 
output variance caused by a given factor and its interactions 



and the total output variance.  Therefore, the larger a factor’s 
TSI, the larger impact it has on the variance of the output. 

An LSA provides sensitivity of output response to inputs 
and assumptions to support decision making. The goal of an 
LSA is to understand the behavior of module outputs in the 
local region of some point of interest [10]. This point of 
interest could be a specific set of inputs and assumptions given 
for the analysis of a particular policy, for which the 
implications of slight changes in some of the assumptions and 
inputs need to be understood to fully understand the impact the 
policy could have. Local sensitivity studies have not yet been 
done for AEDT, but are planned for future assessment work. 

The final step of the AEDT assessment is a report covering 
the entire module assessment.  The report contains the 
information on the module’s DAL, assessment plan, and 
surrogate models, methodologies used and results from the 
analyses conducted.  

The remainder of this paper describes the progress on the 
parametric sensitivity and uncertainty analyses for APM, 
AEM, and AAM modules in AEDT.

III. RESULTS OF AEDT’S FORMAL PARAMETRIC 

SENSITIVITY AND UNCERTAINTY ANALYSES

Parametric sensitivity and uncertainty analyses for three 
modules of AEDT are presented below. These results are the 
first step in an assessment program that will include not only 
individual module assessment, but also an assessment of the 
whole tool. The results shown are a small picture of the total 
assessment that is being performed on AEDT.

A. AEDT APM’s Formal Parametric Sensitivity and 
Uncertainty Analyses

The APM can estimate the flight performance of aircraft using 
either Enhanced Traffic Management System (ETMS) data or 
Official Airline Guide flight profiles.  The APM sensitivity 
and uncertainty analyses have thus far concentrated on ETMS 
defined flights.  Inputs to the APM include atmospheric 
conditions, SAE-AIR-1845 coefficients, and BADA 
coefficients [11].  There are a total of 51 inputs to the module, 
however, to make the assessment of the APM more tractable, 
expert opinion and engineering judgment were used to reduce 
the number of inputs to be studied to 20, by determining which 
of the inputs may have a substantial effect on the APM 
outputs.  For each of these 20 inputs, a probability distribution 
was defined through expert opinion and engineering judgment.  
The inputs and their associated distributions are given in Table 

1, where the distribution parameters are given as (minimum, 
peak, maximum) values of the triangular distributions, and 
values drawn from each distribution are used as multipliers to 
default values

The formal parametric sensitivity and uncertainty analyses 
conducted on the APM focused on estimated thrust, fuel burn, 
fuel flow, and weight outputs, and consisted of propagating 
input uncertainty through the module via Monte Carlo 

simulation, and a GSA.  The APM outputs feed directly into 
the AAM and AEM and thus, the results from the APM 
analyses can be used first, to check assumptions made 
regarding the uncertainty associated with these outputs in the 
AAM and AEM assessment activities, and second, to rank the 
APM inputs in terms of their impacts on downstream modules 
in the system.

Due to computational constraints, a surrogate model was 
used to perform the APM sensitivity and uncertainty analyses.  
The surrogate consisted of 16 individual aircraft types, chosen 
through expert opinion and engineering judgment to best 
represent the range of possible aircraft.  For each of those 
aircraft, a single flight from each stage length flown by the 
particular aircraft, resulting in 54 total flights, was analyzed.

The results from the uncertainty propagation and GSA for 
two particular flights for the fuel burn output are given in Table 
2 and Figures 2 and 3 respectively.  The results are given in 
terms of nine different flight modes defined in the APM, which 
are takeoff ground roll (TGR), take off (TA), climb out (TC), 
En-route climb (EC), cruise (C), en-route descent (ED), 
approach (A), landing ground roll (LGR), and reverse thrust 
(RT). Though the analyses were conducted on all of the APM 
outputs considered, for brevity, the focus here is on the fuel 
burn output only.

Table 1: Inputs and distributions used in APM Assessment

Input
Distribution 

Type
Distribution 
Parameters

Thrust Transition Altitude Triangular (0.90, 1.00, 1.10)

Atmospheric Temperature Triangular (0.90, 1.00, 1.10)

Atmospheric Pressure Triangular (0.70, 1.00, 1.30)

CoeffR (drag-over-lift ratio) Triangular (0.86, 1.00, 1.14)
CoeffCD (takeoff and landing 
speed calibrated airspeed 
coefficient) Triangular (0.86, 1.00, 1.14)
CoeffB (takeoff distance 
coefficient) Triangular (0.86, 1.00, 1.14)
CoeffE (correlated net thrust 
per engine coefficient) Triangular (0.85, 1.00, 1.15)
CoeffF (speed adjustment 
coefficient) Triangular (0.95, 1.00, 1.05)
CoeffGa (altitude adjustment 
coefficient) Triangular

       (0.975, 1.000, 
1.025)

CoeffGb (altitude-squared 
adjustment coefficient) Triangular (0.975, 1.000, 1.025)
CoeffH (temperature 
adjustment coefficient) Triangular (0.98, 1.00, 1.02)

Efficiency Triangular (0.90, 1.00, 1.10)

Power Triangular (0.90, 1.00, 1.10)
Coeff1 (first thrust specific fuel 
consumption coefficient) Triangular (0.90, 1.00, 1.10)
CoeffCr (cruise fuel flow 
correction coefficient) Triangular (0.90, 1.00, 1.10)
MassMin (flight envelope 
related) Triangular (0.90, 1.00, 1.10)
MassMax (flight envelope 
related) Triangular (0.90, 1.00, 1.10)
MaxOpAlt (flight envelope 
related) Triangular (0.90, 1.00, 1.10)
CoeffCD0 (parasitic drag 
coefficient) Triangular (0.86, 1.00, 1.14)
CoeffCD2 (induced drag 
coefficient) Triangular (0.86, 1.00, 1.14)



Table 2: Fuel burn mean and variance estimates from APM uncertainty 
propagation

A320 B777-200
Fuel burn 

mean 
(kg)

Fuel burn 
variance 

(kg2)

Fuel burn 
mean 
(kg)

Fuel burn 
variance 

(kg2)TGR 110.94 105.36 320.09 3798.07
TA 42.51 90.25 130.60 530.08
TC 62.74 155.42 120.34 1014.02
EC 36.30 5.26 139.24 68.91
C 294.01 407.81 105.56 49.09

ED 38.73 6.29 165.67 118.81
A 1.24 0.00 2.94 0.02

LGR 1.47 0.00 1.11 0.00
RT 19.36 0.67 21.17 0.83

The uncertainty propagation results for the fuel burn output, 
shown in Table 2, are given for each flight mode for both an 
Airbus A320 flight and a Boeing 777-200 flight.  Flight modes 
within the APM are broken up into several segments and the 

results shown here are for a single representative segment 
within each flight mode.  The uncertainty propagation results 
show that certain flight modes, such as approach and landing 
ground roll have little variability associated with the fuel burn 
output, while other modes, such as climb out and takeoff 
ground roll have substantial variability associated with the fuel 
burn output.  Further, there are clear differences across the two 
flights shown here, which reveals the need to assess the APM 
by looking at several different aircraft types rather than a single 
representative.

The TSIs given in Figures 2 and 3, show that in general, 
only a few inputs contribute to variability in the fuel burn 
output.  For example, for climb out (TC) for both aircraft types, 
CoeffCD and CoeffE contribute the most to fuel burn 
variability, and for approach (A), Coeff1 contributes nearly all 
of the fuel burn variability for each aircraft. These sensitivity 
results may be used within the APM as part of a module 
verification process and also combined with the uncertainty 
propagation results to inform future APM development by 
considering the impact of APM inputs on the APM outputs that 
are used by downstream modules such as the AAM and 

Figure 2: Total sensitivity indices for the fuel burn output of the APM for an A320 aircraft.

Figure 3: Total sensitivity indices for the fuel burn output of the APM for a B777-200 aircraft.



AEM. This use of the results will be discussed further for the 
fuel burn output of the APM and its impact on AEM results in 
Section IIIC.

B. AEDT AAM’s Formal Parametric Sensitivity and 
Uncertainty Analyses

The AAM computes certain noise metrics at grid point 
locations relative to a flight trajectory for a single flight.  The 
inputs to the AAM are atmospheric conditions, flight 
trajectories, performance metrics such as speed and thrust from 
the APM, and noise-power-distance (NPD) curves.  The inputs, 
along with probability distributions associated with them, 
which were determined through historical databases, expert 
opinion, and engineering judgment, are given in Table 3.  
Samples drawn from these distributions are applied as 
multipliers to default values.  The triangular distribution 
parameters are given as (minimum, peak, maximum) and the 
uniform distribution parameters are given as (minimum, 
maximum).

The sensitivity and uncertainty analyses conducted on the 
AAM focused on aggregated sound exposure levels (SEL) 
from AAM estimates of SEL for individual flights at a specific 
set of grid points.  Rather than assess the AAM at every airport, 
a set of representative airports was selected for the analyses 
through expert opinion and engineering judgment.  For these 
representative airports, uncertainty propagation from inputs to 
outputs via Monte Carlo simulation and a GSA were 
performed.  

The AAM GSA revealed that the NPD curves and 
atmospheric temperature inputs contributed the most to 
aggregated SEL variation.  The analysis also revealed that 
pressure and humidity had minor contributions to aggregated 
SEL variation, and speed, thrust, duration, and bank angle all 
had effectively zero contribution.  This implies that while 
several APM outputs, such as speed, thrust, duration, and bank 
angle, are inputs to the AAM, they are responsible for little of 
the AAM output of aggregated SEL variability, and thus APM 
inputs that affect these AAM inputs would not need to be 
considered in AAM development efforts aimed at reducing the 
variation in aggregated SEL estimates.

Table 3: Inputs and distributions used in AAM assessment

Input
Distribution 

Type
Distribution 
parameters

Atmospheric 
Temperature Triangular (0.89, 1.00, 1.11)

Atmospheric Pressure Triangular (0.97, 1.00, 1.03)

Atmospheric Humidity Triangular
(0.828, 1.000, 

1.172)

Flight Path Trajectory Uniform (-50 ft, 50 ft)

Aircraft Speed Triangular (0.95, 1.00, 1.05)

Engine Thrust Triangular (0.90, 1,00, 1.10)

Flight Segment Duration Triangular (0.95, 1.00, 1.05)

Aircraft Bank Angle Triangular (0.90, 1.00, 1.10)
NPD  Curve (less than 

6000 ft.) Triangular
(0.985, 1.000, 

1.015)
NPD Curve (greater than 

6000 ft.) Triangular (0.95, 1.00, 1.05)

Figure 4 presents the results of the GSA for aggregated 
SEL from several arrivals of DC-10 and two departures of an 
MD-80 aircraft at a particular airport for the NPD curves and 
temperature inputs.  SEL is aggregated at each grid point, thus, 
for each grid point, the inputs to the AAM have a TSI.  The 
figure shows the contours of different TSI levels for both the 
NPD curves and the atmospheric temperature. For each of the 
plots, the origin represents an airport reference point, which 
typically represents the tower location, and is where the aircraft 
take-off and arrive.  As can be seen from the figure, the 
uncertainty associated with NPD curves has a substantial 
impact on aggregated SEL variation for grid points in close 
proximity to the flight path trajectory, and   the temperature has 
a substantial impact on aggregated SEL variation for grid 
points far away from the flight path trajectory. 

C. AEDT AEM’s Formal Parametric Sensitivity  and 
Uncertainty Analyses

The AEM is used to calculate emissions inventories of such 
pollutants as CO2, CO, NOx, SOx, and many others.  Inputs to 
the module include outputs from the APM, such as fuel burn 
and fuel flow, reference emissions indices, and atmospheric 
conditions.  The inputs considered in the parametric sensitivity 
and uncertainty analyses conducted on the AEM are given in 
Table 4.  The table also includes probability distributions for 
each input, which were determined from historical data, expert 
opinion, and engineering judgment.  Like the distributions for 
the APM and AAM inputs, samples from each of the AEM 
input distributions are applied as multipliers to default values.  
The triangular distribution parameters are given as (minimum, 
peak, maximum) and the uniform distribution parameters are 
given as (minimum, maximum).

The analyses conducted in this portion of the AEM 
assessment consisted of uncertainty propagation from inputs to

Figure 4: AAM GSA results for the temperature and NPD curve 
inputs for DC-10 arrivals and MD-80 departures



Table 4: Inputs and distributions used in AEM assessment

Input Distribution 
Type

Distribution 
Parameters

Reference NOx 
Emissions Index

Triangular (0.76, 1.00, 1.24)

Reference THC
Emissions Index

Triangular (0.45, 1.00, 1.55)

Reference CO 
Emissions Index

Triangular (0.74, 1.00, 1.26)

Atmospheric 
Temperature

Triangular (0.89, 1.00, 1.11)

Atmospheric 
Pressure

Triangular (0.97, 1.00, 1.03)

Relative Humidity Triangular (0.828, 1.000, 1.172)

Fuel Flow Uniform (0.95, 1.05)

Fuel Burn Uniform (0.95, 1.05)

SOX Factor Triangular (0.875, 1.000, 1.870)

CO2 Factor Triangular (0.997, 1.000, 1.003)

H2O Factor Triangular (0.983, 1.000, 1.017)

outputs via Monte Carlo simulation, as well as a GSA and 
DSA.  The outputs considered in the analyses included global 
and below 3,000 feet emissions inventories of CO2, NOx, CO, 
SOx, H2O, and unburned hydrocarbons, however, only the 
uncertainty propagation and GSA results for global emissions 
inventories of CO2 and NOx are presented here for brevity.  
The analyses were performed on a surrogate model of the 
AEM, which consisted of a randomly selected subset of flights 
from a representative day of operations [12].  The number of 
flights required in the subset was determined by a minimax 
procedure that minimized the maximum difference between the 
variance of each output calculated by the subset of flights 
(scaled to the representative day) and the variances of each 
output as calculated by the representative day of operations.  
Additional flights were added to the subset until the maximum 
difference between the subset output variances and the 
representative day output variances was less than 5%.  The 
process was repeated 30 times and the largest subset of flights 
that met the minimax criterion in those 30 trials was selected as 
the surrogate model.  The model consisted of 5,266 flights, 
which is considerably less than the 68,343 flights in the chosen 
representative day. 

The results from the uncertainty propagation and GSA for 
global emissions inventories of NOx and CO2 are given in 
Table 5 and Figure 5 respectively.  The results apply to the
surrogate model of 5,266 flights, and may be scaled to any 
number of flights using the method described [12].

The total sensitivity indices given in Figure 5 show that 
different outputs have different key inputs contributing most of 
the output variation.  In the case of NOx and CO2 global 
emissions, the reference emission index of NOx is responsible 
for most of the variation in NOx emissions, while fuel burn is 
responsible for nearly all of the output variation in CO2 
emissions.  The information gained from these analyses can be 
put to use in different ways depending on how the module will 
be used.  For example, if NOx emissions are being considered 
in an environmental impacts analysis and the variability in the 
estimated NOx emissions from the AEM is too great to be 
useful in policy-making, these sensitivity and uncertainty 

analyses show that the variability in NOx emissions is caused 
primarily by the reference emissions index of NOx, which 
could then be explored in more detail to determine if 
uncertainty associated with that input could be reduced.  
However, if CO2 emissions were being studied and the 
uncertainty associated with estimated CO2 emissions from the 
AEM is too great for practical use, the results of these 
assessment activities show that CO2 emissions variability 
arises almost entirely from the fuel burn input, which is an 
output of the APM.  This would point to the need to study in 
more detail the APM inputs that drive the fuel burn output, 
which, as shown in Figures 2 and 3, are a set of 6 performance 
coefficients.  

IV. CONCLUSION

Assessment is a critical step within the development 
process of a simulation tool. A well-assessed tool adds to the 
confidence and understanding of those using the tool. It allows 
for a better understanding of the underlying assumptions of the 
tool and how those assumptions should be considered while 
making decisions based on analysis made by the tool. In 
addition, it allows for the identification of functionality gaps, 
which aides in developing an effective and efficient future 
development program.

The assessment of AEDT is an on-going effort. As the tool 
continues to be developed and improvements are made to the 
modules, individual module assessment will continue. In 
addition, assessments that take into consideration interactions 
between modules, building towards an integrated AEDT 
assessment will also be undertaken. The assessment so far has 
allowed for the creation of an efficient, repeatable process and 
has began to provide insight to the developers on where 
methodology improvements may be necessary. 

Table 5: AEM uncertainty propagation results for global NOx and CO2 
emissions

NOx CO2
Mean 
(kg)

Var (kg2) Mean (kg) Var (kg2)
455,080 1,007,249 106,690,490 383,373,572

Figure 5: Total sensitivity indices for AEM outputs of global emissions 
inventories of NOx and CO2.
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