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Abstract—It is common understanding that weather plays an 

important role in determining the capacity of an airport. Severe 

weather causes capacity reductions, creating a capacity demand 

imbalance, leading to delays. The role of air traffic flow 

management (ATFM) measures is to reduce these delay costs by 

aligning the demand with the capacity. Ground delay program 

(GDP) is one such measure. Though the GDP is initiated in poor 

weather conditions, and weather forecasts are subject to errors, 

present GDP planning procedures are essentially deterministic in 

nature. Forecast weather is translated into deterministic capacity 

predictions on which GDP planning is based. Models which 

employ probabilistic capacity profiles for planning GDPs have 

been developed, but their application has been limited by the 

inability to create such profiles from weather forecasts. This 

paper develops probabilistic profiles for three airports, BOS, 

LAX and SFO using the Terminal Aerodrome Forecast and San 

Francisco Marine Initiative. The profiles are inputs to a static 

stochastic GDP model to simulate ATFM strategies. A design of 

experiments approach has been employed to determine profiles 

which minimize the total average costs. The average cost of the 

methodologies is evaluated against realized capacities to 

determine the benefit of the forecast. It is shown that inclusion of 

weather forecasts reduces the cost of delays. It is shown for SFO 

that on average TAF offers similar benefit in controlling cost of 

delay when compared to STRATUS. Careful use of the TAF 

indicates that other airports would also benefit from using TAF 

in planning of operations. 

Keywords-ground delay program;terminal aerodrome forcast 

;STRATUS;Design of experiments;Response surface 

methodology;Dynamic time warping 

I.  INTRODUCTION  

Adverse weather conditions in the vicinity of an airport 
often reduce its operational capacity, leading to an imbalance 
between capacity and demand. This capacity-demand 
imbalance may lead to delays, and, in the absence of traffic 
management initiatives, holding in the terminal area, increased 
controller workload, and excessive fuel burn. To mitigate these 
impacts, the Federal Aviation Administration (FAA) often 
implements Ground Delay Programs (GDPs).  GDPs mitigate 
the terminal weather-induced airspace congestion by metering 
the arrival of aircraft to the destination airport.  The metering 

matches the number of flights arriving in a period with the 
arrival capacity forecast or the “airport acceptance rate” (AAR) 
forecast. The metering of flights is achieved by delaying 
inbound flights on ground at the origin airport prior to their 
departure. If the AAR forecast is perfectly accurate, the 
metering from the GDP ensures that the total delay costs are 
minimized.  

It is common understanding that the AAR is primarily 
influenced by the weather in the vicinity of the airport and thus 
AAR forecasting necessitates a terminal weather forecast. The 
weather forecasts are seldom accurate in perfectly predicting 
the conditions and can thus lead to inaccurate predictions of the 
AAR. There has been considerable research on how to plan 
GDPs so as to take into account uncertainty about airport 
capacity. GDP models found in the literature incorporate the 
uncertainty in the AAR and can be classified in two broad 
categories: dynamic models and static models. In dynamic 
models, as information about realized capacity is updated, 
ground holding decisions are revised, incorporating a wait-and-
see strategy. Most dynamic models require scenario trees to 
represent the uncertainty in the AAR. Conversely, in a static 
model, decisions made once are not revised. Static models 
require probabilistic capacity profiles as inputs. Reference [1] 
contains more details on the types of GDP models. Most of the 
literature on these models has taken the capacity profiles or 
scenario trees as given, assuming that in real-world application 
these could somehow be extracted from weather forecasts and 
the expertise of traffic management specialists. There is 
considerably less literature on the development of specific day-
of-operation probabilistic capacity profiles.  Accordingly, this 
paper focuses on the development of probabilistic capacity 
profiles from a day-of-operation weather forecast using a 
design-of-experiments (DOE) methodology. This methodology 
determines the best input parameter values which lower the 
costs in a GDP. Such profiles, when used in conjunction with 
appropriate GDP planning models, could lead to better GDPs, 
with lower realized costs as a result of reducing either 
excessive ground delays or airborne delay. 

 This paper develops probabilistic capacity profiles from 
weather forecasts for three United States (US) airports: San 
Francisco International Airport (SFO), Boston Logan 



International Airport (BOS) and Los Angeles International 
Airport (LAX). The weather forecast used for constructing the 
profiles for the three airports is the Terminal Aerodrome 
Forecast (TAF) which is issued for all the major US Airport. 
TAF contains forecast information on visibility, ceiling, winds, 
and other meteorological variables for the entire day. Amongst 
the above airports SFO is unique because it is issued another 
forecast, SFO Marine Stratus Forecast System (STRATUS) 
along with the TAF. STRATUS is a forecast project created 
specifically for SFO, because it experiences a low altitude 
marine stratus cloud layer during the summer which reduces 
the airport capacity. STRATUS forecasts the “burn-off” time of 
these marine clouds i.e. the time when the capacity would 
increase. We construct probabilistic capacity profiles from the 
TAF for all the three airports and also construct profiles for 
SFO using the STRATUS forecast. 

The contribution of this paper is that it provides techniques 
which use several statistical methodologies to convert weather 
forecasts into specific day-of-operation probabilistic capacity 
profiles using a design-of-experiments (DOE) approach. The 
profiles are provided as inputs to a static stochastic GDP model 
that determines the optimal arrival rate for an airport.  The 
DOE approach determines parameters which generate 
probabilistic profiles minimizing the total realized costs. We 
compare the realized costs of the simulated outcomes from the 
GDP model based on the different methods of scenario 
generation from weather forecasts against two other reference 
cases. In the first, the GDP is based on perfect information 
about the capacity, while in the second profiles are developed 
from historical capacity data without use of the day-of-
operation weather forecast.  

This paper develops probabilistic capacity profiles based on 
the realized capacity and the weather forecast for the summer 
months (May-September) of 2004 to 2006 for the three 
airports. In total, the data set included D=446 days for SFO, 
D=432 days for BOS and D=450 days for LAX for which the 
TAF weather forecast and the realized capacity were both 
available. The STRATUS forecast for SFO was available for 
only 150 days because they become available when marine 
clouds are forecast in the in the terminal area. We construct 
probabilistic profiles which represents capacity for every 15 
minutes (period) from 7am to 10pm as the bulk of the traffic is 
occurs in this time period. The reported results are based on 
three airports for 45 historical days but the methods for 
generating capacity profiles from the TAF can be applied at 
any other airport for which a TAF is available.  

This paper proceeds as follows. Section 2 provides the 
literature review. Section 3 presents the GDP model Section 4 
describes the weather forecasts and the several techniques for 
generating probabilistic capacity profiles using the design of 
experiment approach. Section 5 presents a cost comparison of 
the strategies obtained from the profiles developed in Section 4. 
Section 6 offers conclusions. 

II. LITERATURE REVIEW 

The current National Airspace System (NAS) rarely 
incorporates uncertainty of the weather forecasts into strategic 
decisions. Operations planning assume a deterministic 
approach using expected weather conditions [2]. Since it is 

difficult to accurately predict AAR, several researchers have 
formulated GDP models which require probabilistic capacity 
profiles or scenario trees for AAR as inputs [1], [3], [4]. A 
probabilistic capacity profile is a time series of capacity values 
(typically based on a quarter-hour time unit) and an associated 
probability. For a given airport and day there will typically be 
several profiles depicting different possible evolutions of 
capacity. Thus the set of stochastic profiles capture the 
uncertainty in the future arrival capacity. Methods for 
generating these profiles have focused on developing them 
from historical data without specific reference to a particular 
day-of-operation [5]. Other scenario-generation methods have 
been developed to support the application of stochastic 
programs in finance [6]. 

 Reference [5] formulates a methodology for developing 
stochastic profiles from historical AAR data for various 
airports in the United States. The profiles are the centroids of 
the clusters obtained after K-means clustering the AAR time 
series. Their approach in profile construction is devoid of any 
weather forecast information. Reference [7] presents a GDP 
model based on the SFO Marine Stratus Initiative (STRATUS) 
forecast. They model the time of fog burn off as a random 
variable with the probability distribution obtained from 
STRATUS. They assume at fog burn-off the landing capacity 
of SFO increases sharply. Refence [8] gauged the imprecision 
of the forecast weather information with the actual weather by 
calculating avoidable delays. First they matched the realized 
historical weather in a period with the capacity of the airport in 
that period. Using this developed relationship, they predicted 
the AAR from the Terminal Aerodrome Forecast (TAF) and 
the Meteorological Aviation Report (METAR) for every 
period. From a queuing model, they determined the delays 
between the scheduled arrivals and AAR predicted from TAF 
and AAR predicted from METAR. This deterministic approach 
ignores the uncertainty concerning the TAF. Reference [9] uses 
the day-of-operation weather forecast to generate probabilistic 
capacity profiles for SFO but have not addressed how to 
choose the parameters which influence the probabilities and the 
number of the profiles. Their approach does not produce 
probabilistic profiles which give the lowest realized costs in a 
GDP simulation. 

While there is previous research that addresses the 
development probabilistic capacity profiles from historical 
capacity data and which translates a TAF forecast into a 
deterministic capacity forecast, the problem of developing 
probabilistic capacity scenarios from a TAF forecast that give 
the lowest costs has yet to be addressed. The research presented 
here fills that gap.  

III. BALL ET AL. STATIC STOCHASTIC GDP MODEL 

This section describes Ball et al. [3] static stochastic model 
which requires probabilistic capacity profiles as inputs. This 
model determines ground delays by minimizing the total 
expected costs of delay in a GDP by determining the optimal 
rate at which aircraft should land at the destination airport. This 
rate is termed as the Planned Airport Arrival Rate (PAAR), for 
each time period. As mentioned in the introduction, uncertainty 
of the AAR is captured by probabilistic capacity profiles. In the 
model the cost of air delay ca is assumed to be greater than cost 



of ground delay cg (if ca ≤ cg there would not be a need to delay 
the aircraft on the ground). The model takes the following 
form: 

𝑴𝒊𝒏   𝒄𝒈 × 𝑮 𝒕 +   𝒄𝒂 × 𝑾 𝑺𝒑, 𝒕 × 𝑷𝒑

𝑻

𝒕=𝟏

𝑵

𝒑=𝟏

𝑻

𝒕=𝟏

  (1)  

Subject to: 

𝑨 𝒕 − 𝑮 𝒕 − 𝟏 + 𝑮 𝒕 = 𝑫 𝒕  

 ∀𝒕 ∈ 𝟏. . 𝑻 + 𝟏, 𝑮 𝟎 = 𝑮 𝑻 + 𝟏 = 𝟎  
(2)  

−𝑾 𝑺𝒑, 𝒕 − 𝟏 + 𝑾 𝑺𝒑, 𝒕 − 𝑨 𝒕 ≥ −𝑴 𝑺𝒑, 𝒕  

 
∀𝒕 ∈ 𝟏. . 𝑻 + 𝟏, −𝑾 𝑺𝒑,𝟎 = −𝑾 𝑺𝒑, 𝑻 + 𝟏 = 𝟎,

𝒑 ∈ 𝟏. . 𝑵
  

(3)  

𝑨 𝒕 , 𝑾 𝑺𝒑, 𝒕 , 𝑮 𝒕 

∈ 𝒁+  ∀𝒕 ∈ 𝟏. . 𝑻 + 𝟏, 𝒑 ∈ 𝟏. . 𝑵  
(4)  

Where, t is the time period, Sp is the p
th

 capacity profile
 

(length); 𝑷𝒑  is the probability of profile Sp; T is the total 

number of time periods or planning horizon; N is the total 
number of profiles; G(t) is the ground holding at time t; 
W(Sp,t) is the air holding under profile Sp at time t; A(t) is the 
planned airport acceptance rate at time t (PAARs); M(Sp,t) is 
the capacity under profile Sp at time t; D(t) is the demand in 
period t; ca is the cost of airborne delay; cg is the cost of ground 

delay; N is the total number of profiles in the model. {𝑺𝒑}𝒑=𝟏
𝑵  is 

the set of profiles; 𝑷𝒑 = 𝟏𝑵
𝒑=𝟏  

The objective function, (1) minimizes the sum of the fixed 
ground delay costs and the expected air delay costs. Equation 
(2), is a queuing constraint for flights bound for the destination 
from all the origin airports. It enforces flow conservation. The 
demand at period t, D(t), plus the planes ground held in period 
t-1,G(t-1), should either land, and thus count toward A(t), or be 
put in a queue, contributing to G(t). Equation (3) is a queuing 
constraint at the destination airport. Under capacity profile Sp, 
all planes can land, A(t), or are delayed from the previous time 
period W(Sp,t-1) either land or are further air delayed to the 
next period, W(Sp,t). The inequality is required as the demand 
might be less than the available capacity. Equation (4) ensures 
that A(t), W(Sp,t) and G(t) are real positive integers. The 
decision variables are the number of aircrafts landing in a 
period t, A(t), the number of aircrafts which are subjected to 
ground holding G(t) and the number of aircrafts subjected to air 
holding under profile Sp, W(Sp,t). The ratio of the cost of delays 
is selected to be ca/cg=3 based on published data. The data for 
demand, D(t) (planes originally scheduled to land in a period t) 
is obtained from the ASPM website.  

This GDP model determines a PAAR for a given demand 
profile and a set of probabilistic capacity profiles. According to 
this model, the aircraft arrive, intending to land at the 
destination airport, at the rate determined by the PAAR. When 
the aircraft approach the terminal there might insufficient 
capacity as the inclement weather might have persisted. This 

realized capacity might be different than the capacity 
represented by the probabilistic capacity profiles. This leads to 
an additional realized airborne delay at the airport. If shown by 
a queuing diagram, this realized airborne delay is the area 
between the PAAR and the realized capacity curves. The 
difference between the PAAR and the realized capacity at any 
time determines the amount of realized airborne holding, while 
the ground holding is obtained directly from the GDP model. 
The total realized cost (TC) of delay for any day-of-operation is 
cg   ground delay + ca  airborne delay. The extent of the 
benefit of weather forecasts in decision making is gauged by 
comparing the realized TC averaged over a sample of 
historical days. The average TC under different methods of 
profile generation is also compared.  

In the next section, we provide several methodologies to 
generate the profiles (Sp), their probabilities (Pp) and the 
number of profiles (N) required as inputs by the Ball et al 
model.  

IV. PROFILE GENERATION AND WEATHER FORECASTS 

In this section we first discuss the methodology to generate 
profiles devoid of weather forecast information. We then 
discuss the Terminal Aerodrome Forecast (TAF) and the 
methodologies to generate probabilistic capacity profiles from 
the TAF. We conclude the section by discussing the STRATUS 
forecast and the associated methodology for generating profiles 
exclusively for SFO from STRATUS. We have collected 
historical realized capacity, the TAF and the scheduled demand 
for N historical days. 

A. No Weather Forecast: Naïve Clustering 

This method of profile generation does not incorporate any 
weather forecast and is similar to that described in [5]. The 
methodology generates profiles from realized historical 
capacity and these are used as probabilistic profiles for the day-
of-operation. In [5], the centroids of the clusters obtained after 
K-means clustering on the AAR time series are the profiles. Let 
[A]T×N = [A1, A2, . . , AN] be the data matrix of the AAR time 
series for D historical days. Ar is column vector of the AAR 
time series of length T time periods for day r. K-means 
clustering splits the data matrix into a predefined number of 
clusters, l, where each cluster ck contains dk days. The days 
which have similar AAR time series are grouped together i.e. 
they are in the same cluster. The similarity is defined as the 
sum over all the periods of the Euclidean norm between the 
AAR time series for each period. A smaller value of the 
Euclidean norm implies greater similarity. After the K-means 
operation we obtain a partition of a set of days. 

 𝑨𝒉
𝟏 

𝒉=𝟏

𝒅𝟏
 ,  𝑨𝒉

𝟐 
𝒉=𝟏

𝒅𝟐
  , ,  𝑨𝒉

𝟑 
𝒉=𝟏

𝒅𝟑
  ,  ,  𝑨𝒉

𝒍  
𝒉=𝟏

𝒅𝒍  

Such that, 

 𝒅𝒋 = 𝑵𝒍
𝒋=𝟏  and   𝑨𝒉

𝒋
 
𝒉=𝟏

𝒅𝒋𝒍
𝒋=𝟏 =  𝑨𝒉 𝒉=𝟏

𝑵  and 

  𝑨𝒉
𝒋
 
𝒉=𝟏

𝒅𝒋𝒍
𝒋=𝟏 =  𝜱 

(5)  

The optimal number of clusters 𝑙∗, is an open problem and 
there are ad-hoc procedures which assist in determining it. 
More clusters imply more profiles which capture more 
variation in capacity but each profile then has a lower 
probability of occurrence. Reference [5] provides an algorithm 



to determine the number of clusters involving the pseudo- F 
statistic while enforcing a minimum number of days for (dk) for 
each cluster. 

Procedures like the pseudo- F statistic measure the 
compactness of a cluster with respect to other clusters and 
report an average value over all clusters. The pseudo F value is 
implemented in SAS and works well with uncorrelated 
variables [10]. The pseudo-F statistic captures the “tightness” 
of clusters, and is a ratio of the mean sum of squares between 
clusters to the mean sum of squares within a cluster. Higher 
pseudo F-values indicate tight clustering and imply that the 
data is well separated or better clustered. An alternative is the 
Silhouette value, which varies between -1 and 1, measures the 
similarity between an object and the cluster in which it is 
classified. The indicator of a strong clustering is the average 
silhouette value close to 1 [11]. The procedure for silhouette 
value is implemented in MATLAB. Caution should be 
exercised in monitoring the number of data points falling 
within each cluster. If they are too many data points within one 
cluster, it might be worth considering breaking it up on the 
other hand if there are too few days one would tend to merge 
two clusters together.  

The profiles are the within cluster means of the AAR time 
series in that cluster. Profile Si is determined by the average of 
the AAR profiles in the cluster ci. 

𝑺𝒊 =  
 𝑨𝒉

𝒊𝒅𝒊
𝒉=𝟏

𝒅𝒊
       𝒊 ∈ 𝟏. . 𝒍∗ (6)  

Where [ ] is the nearest integer roundup operator. 

The probability of the profile Si is the proportion of days in 

ci. 𝑷𝒊 = di / N      𝒊 ∈ 𝟏. . 𝒍∗. The number of clusters was 

determined by the highest average silhouette value. 

 

We call this procedure Naïve Clustering as it clusters the 

AAR without any weather information.  

B. TAF-based Capacity Profiles 

The Terminal Aerodrome Forecast (TAF) is a weather 
forecast issued for every major airport four times a day at 
6hour intervals by the National Oceanic and Atmospheric 
Administration (NOAA). It contains numeric values for seven 
metrological variables (wind speed and direction, visibility, and 
heights of four cloud types) along with qualitative variables for 
rain, fog, mist, etc for that airport. The TAF issued between 
5am and 7am was used for developing two methodologies of 
generating probabilistic capacity profiles. Since, the TAF 
forecasts seven metrological variables for each period and 
therefore the entire day-of-operation can be represented by a 
column vector of length 60 (15 min periods) ×7 
variables/period = 420. Therefore, the entire TAF data set 
could be represented by a 420 (variables) × N( total number of 
historical days) matrix. 

Let [𝐓]𝐋×𝐃 be a matrix (L=420, N= total number of days), 
where Tk is a column representing the TAF for day k. We 
performed a Principal Component Analysis (PCA) on this 
matrix. PCA is a standard statistical technique which reduces 
the dimensionality of the data by converting correlated 

variables into a smaller number of uncorrelated variables called 
principal components. The principal components are directions, 
representing the variation in the data. Thus the first principal 
component direction represents the maximum variability in the 
data and each succeeding component accounts for as much of 
the remaining variability as possible. PCA removes the 
potential correlation between the forecasted variables for the 
same day [12]. For example, there might be correlation 
between visibility and ceiling and also there might be 
correlation between the forecast weather conditions of adjacent 
time periods. As a standard preprocessing technique, we 
normalize the [T] matrix i.e. the mean and the variance is 0 and 
1 respectively for each variable.  Equations (7) through (11) 
describe the PCA on the data set.  

[𝐂]𝐋×𝐋 =
 𝐓 [𝐓]𝐭

𝐍 − 𝟏
  (7)  

Where [C]  is the empirical correlation matrix. 

𝐂𝑿 = 𝝀𝑿 (8)  
Where lambda is the eigenvalue corresponding to the 

eigenvector X 

Sort the eigenvalues in a descending manner (matrix is full 
rank) i.e. 

𝝀 𝟏 > 𝝀 𝟐 > 𝝀 𝟑 > .  . >  𝝀 𝑳  (9)  
A standard technique is to capture 90% variability, in 

which case the number of eigenvalues required is given by 

Equation 10.  

𝒏 = 𝒂𝒓𝒈𝒎𝒂𝒙𝒌  
 𝝀 𝒑 

𝒌
𝒑=𝟏

 𝝀 𝒑 
𝑳
𝒑=𝟏

≤ 𝟎. 𝟗 (10)  

Let eigenvector X[i] correspond to its eigenvalue λ[i], then 

define the matrix  𝐖 𝒏×𝑳 =  

−𝑿 𝟏 
𝑻 −

⋮
−𝑿 𝒏 

𝑻 −
    

The reduced TAF matrix  

 𝐓  
𝐧×𝐃

=  𝐖 ×  𝐓  (11)  

In this reduced TAF matrix,  T  
n×N

we wanted to classify 

days which had the similar TAF. We proceed to perform a K-

means clustering on the matrix[T ]. It has been proved in [13] 
that performing PCA prior to K-means increases the accuracy 
of the K-means clustering.  

Thus a K-means clustering on [T ] with l predefined clusters 
leads to the following 

 𝑻 𝒉
𝟏 

𝒉=𝟏

𝒅𝟏
 ,  𝑻 𝒉

𝟐 
𝒉=𝟏

𝒅𝟐
  ,  𝑻 𝒉

𝟑 
𝒉=𝟏

𝒅𝟑
  , …  ,  𝑻 𝒉

𝒍  
𝒉=𝟏

𝒅𝒍
 (12)  

Such that, 

 𝒅𝒋 = 𝑵𝒍
𝒋=𝟏   (13)  

Where dj is the number of days in the cluster cj 

  𝑻 𝒉
𝒋
 
𝒉=𝟏

𝒅𝒋𝒍
𝒋=𝟏 =  𝑻 𝒉 𝒉=𝟏

𝑵
 and   𝑻 𝒉

𝒋
 
𝒉=𝟏

𝒅𝒋𝒍
𝒋=𝟏 =  𝜱 (14)  

After the PCA operation, the variables are uncorrelated and 
thus the number of clusters is determined using the pseudo-F 
statistic. Let 𝒍∗  be the optimal number of TAF clusters, thus 
from this analysis on the TAF we can classify the day-of-



operation in either one of the 𝒍∗  clusters from 𝒄𝟏  to 𝒄𝒍∗ 
depending on the classification of its TAF. 

Next, we determined a set of representative capacity 
profiles from the realized capacity of the days which were 
classified in the same TAF cluster. We performed another K-
means clustering on the realized AAR time series profile of the 

days within 𝒄𝟏  to 𝒄𝒍∗ . Let  A h
r  

h=1

dr
 be the set of AAR time 

series for the days in cluster 𝒄𝒓  ( r ∈ 1. . 𝑙∗ ). The K-means 
operations partitioned the AAR data set within each TAF 
cluster. The highest average Silhouette value determined the 
number of clusters in the second K-means clustering. Let the 
optimal number of AAR clusters within a TAF cluster 𝒄𝒓 be 

𝒌𝒓
∗  (r ∈ 1. . 𝒍∗). Define  A h

r,i 
h=1

dr ,i
to be the set of AAR profiles 

for days in an AAR cluster i within a TAF cluster cr  and dr,i 

are the total number of days within AAR cluster i and TAF 
cluster 𝒄𝒓 (i ∈ 1. . 𝒌𝒓

∗  , r ∈ 1. . 𝒍∗). 

  A h
𝑟 ,𝑖 

h=1

dr ,i

𝒌𝒓
∗

𝒊=𝟏

=   A h
𝑟  

h=1

dr
 and  𝒅𝒓,𝒊 = 𝒅𝒓

𝒌𝒓
∗

𝒊=𝟏

  (15)  

The set of capacity profiles are the averages of the AAR 
time series in the AAR cluster. The probability of the profile is 
the proportion of days within the AAR cluster  

The profiles and their probability are determined as below  

𝑺𝒓,𝒊 =  
 𝑨 𝒉

𝒓,𝒊𝒅𝒓,𝒊

𝒉=𝟏
𝒅𝒓,𝒊

    

 𝑷𝒓,𝒊 =
𝒅𝒓,𝒊

 𝒅𝒓,𝒌
𝒌𝒓
∗

𝒌=𝟏

  𝒊 ∈ 𝟏. . 𝒌𝒓
∗  , 𝒓 ∈ 𝟏. . 𝒍∗ 

(16.1)  

(16.2)  

We call this procedure TAF based clustering.  

C. Dynamic Time Warping Profiles 

This is the second method which uses the TAF to determine 
the probabilistic capacity profiles using Dynamic Time 
Warping (DTW). DTW is an established methodology to study 
the similarity between two electrical signals. It is particularly 
useful to match sequences which are translated in time. Recent 
research has demonstrated that DTW can be useful to detect 
similar multidimensional time series [14]. DTW is a technique 
where one sequence is “warped” in time around the other. The 
two time series are aligned to a distance matrix such that both 
of them start from the lower left corner and end at the top right 
corner. Each cell of the distance matrix is a cost representing 
the distance between the corresponding time pairs of the two 
series. Finally, a minimum cost path between the lower left 
corner and the upper right corner of the distance matrix is 
determined using dynamic programming. The cost of this path 
represents the similarity between the time series. The deviation 
of the minimum cost path from the diagonal of the distance 
matrix indicates the warping of the time series. In this case, the 
multidimensional time series being compared are the day-of-
operation TAF and the historical TAFs. DTW can match TAF 
variables from different time periods and therefore can 
determine forecasts which are similar but translated in time. 
We used the Euclidean norm, applied to the standardized 

weather variables, to generate the costs for each cell in the 
distance matrix.  

Potentially, several minimum cost paths are possible 

through the distance matrix. To restrict the paths, we have 

multiplied the off-diagonal cells by a Weighing Factor (WF≥ 

1). A higher WF restricts the warping of the time series and 

aligns the minimum cost path closer to the diagonal of the 

distance matrix whereas a lower WF allows the minimum cost 

path to vary through the distance matrix. In other words a high 

WF compares forecasts locally and not for the entire day. 

Tables I and II, shows the distance matrix and minimum cost 

path (highlighted) along with the cost for two artificially 

generated multidimensional time series of length 5 periods. 

TABLE I.  MINIMUM COST PATH FOR WF=1 

WF = 1, Minimum cost path = 0.962 
Periods 1 2 3 4 5 

5 0.498 0.412 0.620 0.116 0.093 

4 0.815 0.376 0.943 0.184 0.048 

3 0.200 0.688 0.532 0.117 0.648 

2 0.926 0.119 0.448 0.251 0.560 

1 0.136 0.815 0.814 0.062 0.422 

TABLE II.  MINIMUM COST PATH FOR WF=10 

WF = 10, Minimum cost path =1.07 

Periods 1 2 3 4 5 

5 4.978 4.122 6.197 1.160 0.093 

4 8.149 3.760 9.433 0.184 0.482 

3 1.999 6.879 0.532 1.175 6.481 

2 9.264 0.119 4.483 2.507 5.600 

1 0.136 8.152 8.138 0.618 4.225 

We use the technique of dynamic time warping to compare 
the day-of-operations TAF with historic TAFs. AAR time 
series of the historically similar TAF days are used for the 
capacity profiles. The probabilities of the profiles are inversely 
proportional to the cost of the minimum cost path raised to a 
Dimension Factor (DF). As the DF increases, the degree of 
similarity decreases because the days which are less similar to 
the day-of-operation are penalized greater by an increase in 
their total cost.  

The mathematical formulation takes the following form. 
Let FD be a time series of the TAF for the day-of-operation. FD 
is thus a 7 dimensional time series of length 60. The 7 
dimensions represent the forecast per quarter period and the 
day-of- operation is divided in a total of 60, 15 minute periods. 

Let {Fj}j=1
N  be a set of N historical TAFs for N historical 

days. DTW evaluates the minimum cost path between FD and 
𝐹𝑗 . FD r  is the TAF for period r for the day-of-operation and 

similarly Fj s  is the historical TAF for period s for day j. A 

distance matrix of size 60 × 60 is first computed for all possible 
pairs i.e. a total of N matrices are computed for comparison. 
Any element (r,s) of the distance matrix for comparing 𝐹𝐷 and 



𝐹𝑗  is D FD(r), Fj(s) =  FD r − Fj s  
2

2
× WF  (r,s ∈

 1. .60 , r ≠ s) and D FD( r), Fj(r) =  FD r − Fj r  
2

2 
 (r ∈

 1. .60 )  

The minimum cost path between FD and 𝐹𝑗 is given by 

DTW FD(60), Fj(60)  where,  

DTW FD (t), Fj(t)  

= D FD t , Fj t  

+ mi n DTW FD t − 1 , Fj t

− 1  , DTW FD t

− 1 , Fj t  , DTW FD t , Fj t

− 1    

(17)  

Thus if two multidimensional sequences, A and B, are 
identical, the DTW(A,B) is 0. The minimum cost path would 
be the diagonal of the distance matrix. A smaller value of the 
minimum cost path implies a greater similarity between the 
time series. 

The number of profiles is given by the rule defined by (18). 
It determines the number of profiles by enforcing the 
probability of the least similar historical TAF is greater than the 
minimum probability threshold,𝑃𝑚𝑖𝑛 . A lower 𝑃𝑚𝑖𝑛 value will 
make n large and  a larger 𝑃𝑚𝑖𝑛 value would make n small. 

𝑛 = argmax
k

1

DTW FD(60), F j (60) 
DF

 
1

DTW FD(60), F j (60) 
DF  k

j=1

  

≥ Pmin  

(18)  

Where, 

DTW  FD 60 , F 1  60  

≤  DTW  FD(60), F 2  60  ≤ . .

≤  DTW (FD(60), F N (60)) 

(19)  

The set of profiles is thus the actual AARs for the „n‟ days. 

S[k] = AAR[k]  (∀k ∈ ( 1 , . . ,  n )  

The profile probabilities are obtained after normalizing the 
minimum cost path for the „n‟ days. 

P k =

1

DTW FD(60), F k (60) 
DF

 
1

DTW FD(60), F j (60) 
DF  n

j=1

 (20)  

We refer to capacity profiles obtained from this procedure 
as DTW Profile. 

D. A design-of- experiments approach to DTW Profile 

Constructing probabilistic capacity profiles from DTW 
Profile requires three input variables which determine the 
probabilities, the set of profiles and the degree of similarity. 
These three variables are Weighing Factor (WF), Dimension 
Factor (DF) and the minimum probability threshold (𝑃𝑚𝑖𝑛 ). 
Since the generated set of probabilistic capacity profiles 
influence the ground delay decisions these parameters 
indirectly control the total realized cost. It is therefore essential 

to determine values of these variables which minimize average 
TC for an airport. We have determined input values which 
minimize the average TC for each airport using a technique 
called Response Surface Methodology used in design-of-
experiments.  

Response Surface Methodology (RSM) is a statistical 
technique which iteratively changes the inputs to determine an 
input combination which minimizes the output [15]. Inputs at 
every iteration change by moving in the direction which 
minimizes the output. Eventually, as the iterations increase, 
RSM determines the input combination or the region of input 
space which produces the minimum output. In this research, 
we minimize the average TC, which is the output, by 
determining the values of the three input variables. 

Initializing the RSM, requires a factorial design and some 
starting values for the input variables where the output is 
evaluated. We have chosen a Face Centered Cube (FCC) 
factorial design which evaluates the average TC at 15 points (8 
corners of the cube, 6 centers of the face and 1 centre of the 
cube) as shown in Fig. 1. The three dimensions of the cube 
represent the three variables. A FCC cube measures the output 
at three different levels for each input variable (a high value 
corresponding to 1, mid value corresponding to 0 and a low 
value corresponding to -1). Thus each of the 15 points 
represents a unique input combination to be evaluated. 
Depending on the input combination, the TC is evaluated for 
each day using the model in section III and averaged over all 
the days in the sample, to determine the average TC.  

 

Figure 1.  Face Centered Cube design 

After determining the average total realized costs at the 15 
points, the cube gets re-centered on the point which gives the 
lowest cost. This process continues till the minimum cost point 
converges at the center of the cube and the cube can‟t be re-
centered furthered. Therefore this center point is the input 
combination that minimizes the average TC for that airport. We 
acknowledge that this approach is susceptible to a local 
minimum and we address this issue by randomly selecting 
multiple starting points and observe their convergence values.  

E. STRATUS and Fog Clustering 

STRATUS is a program designed by MIT Lincoln Labs 
specifically for SFO to forecast the fog burn-off time and the 
probability that the fog would burn-off before 10am, 11am and 
noon. The forecast burn-off time is a proxy for the transition 
time from single landings to dual parallel landings at SFO. This 
burn off time is determined by using an ensemble of regression 
models and atmospheric boundary layer physics model. The 



probabilities are determined by comparing empirically the 
forecast time of burn-off with the actual time of burn-off at 
SFO [16]. STRATUS updates the forecast of the burn off time 
on an hourly basis from 2:00-11:00am PST. NASA Ames 
Research Center maintains a repository where the output from 
STRATUS is stored for the dates when marine clouds are 
forecast in the terminal area. For these dates, the data contains 
the predicted burn off time, actual burn off time and the 
probability that the fog would burn-off before 10am, 11am and 
12 noon.  

We base our analysis on the STRATUS forecast generated 
at 8:00am Pacific Standard Time (PST) for over 180 days in 
the summer months of 2004 to 2006. We choose the 8:00am 
forecast because it is the first forecast of the day incorporating 
the predictions from the Satellite Statistical Forecast Model 
(SSFM). We concentrated on the days when the fog burned off 
between 9:30am and 11:30am PST as the number of days 
outside this time bracket were very few. These days were 
binned in 15 minute periods according to the actual fog burn-
off time between 9:30 to 11:30 a.m. PST. In total there are 

eight fog burn off bins{𝑩𝒌}𝒌=𝟏
𝟖 . The number of days, di, in bin, 

Bi, is shown in the Table III.  

TABLE III.  BINNING OF ACTUAL FOG BURN OFF TIME 

Bin Number of Days 

9:30-9:45am 15 

9:45-10:00am 16 

10:00-10:15am 16 

10:15-10:30am 11 

10:30-10:45am 24 

10:45-11:00am 22 

11:00-11:15am 18 

11:15-11:30am 15 

From each bin we constructed a probabilistic capacity 
profiles as follows: 

{𝑨𝒊
𝑩𝒌}𝒊=𝟏

𝒅𝒌  is the set of AAR profiles for the days in bin Bk 

(k∈1,2,..8). Each profile is a vector specifying the AAR value 
for each 15-minute time period from 7am to 10 pm. The profile 
Si is determined by the average of AAR profiles in Bi 

𝑺𝒊 =  
 𝑨𝒉

𝑩𝒊𝒅𝒊
𝒉=𝟏

𝒅𝒊
   𝒊 ∈ 𝟏. . 𝟖 (21)  

The profiles are shown in the Fig. 2. 

A closer inspection of the periods when the fog burns off 
reveals that there is a transition period lasting approximately 
for 45 minutes when the AAR is 45/hour. There is not an 
immediate increase in the AAR from 8 arrivals per period to 15 
arrivals per period as assumed in [7]. While calculating the 
ideal GDP end time, this transition should be taken into 
account. Ignoring this transition period would lead to an 
increased cost of airborne delays as the capacity would be over 
predicted immediately after burn-off. 



Figure 2.  Profiles from Fog Burn off clustering 

In Fig. 2, we observe an oscillation in the profiles. This is 
because of the way the AAR is reported in the ASPM database. 
The original rates are reported on a per-hour basis, which is 
then decomposed into 15-minute values in a manner that 
preserves integrality. Thus, the AAR of 60/hour reported as 
15,15,15,15/quarter hour, an AAR of 45/hour as 
10,11,12,12/quarter hour  and an AAR of 30/hour as 
8,7,8,7/quarter hour, causing the observed oscillation. 

MIT Lincoln labs, on recommendation by the Traffic 
Management Unit at Oakland center, incorporated “risks” to 
the output of STRATUS. The risks are, in effect, cumulative 
distribution function (CDF) values of the form: P(Burn off < 
T1)=P1, P(Burn off <T2)=P2 and P(Burn off <T3)=P3 where T1 
< T2< T3 and P1 ≤ P2≤ P3. The “risks” output by STRATUS 
for the day-of-operation can determine the probability of the 
eight profiles. Using the STRATUS-provided Cumulative 
Distributed Function (CDF) values, we linearly interpolate to 
obtain CDF values for each 15-minute period between 9:30 and 
11:30 am. 

 From the CDF the probability of any bin, Bi, can be 
calculated.  

𝑷𝑩𝒊
     = 𝑷𝒓𝒐𝒃 𝑩𝒖𝒓𝒏 𝒐𝒇𝒇 ≤  𝑩𝒊  

− 𝑷𝒓𝒐𝒃 𝑩𝒖𝒓𝒏 𝒐𝒇𝒇 ≤  𝑩𝒊      𝒊 
∈  𝟏. . 𝟖  

(22)  

Where  ·  and  ·  are the lower and upper bin boundaries. 

Equation (22) establishes the probability of the burn off in a 

particular bin. Further, if the burn off probability in a 

particular bin, Bi, is 𝑷𝑩𝒊
     , then the capacity profile, Si, 

depicting burn off in Bi, would have a probability 

𝑷𝒊 =
𝑷𝑩𝒊

 𝑷𝑩𝒊
     𝟖

𝒊=𝟏

           
    ∀𝒊 (23)  

Equation (23) is a simple renormalization of the 
probabilities of the bins. The renormalized probabilities would 
sum to one. 

In conclusion, we have generated 8, 15 minute burn-off 
bins corresponding to the capacity profiles as shown in Fig. 2. 
From the STRATUS predictions of fog burn- off time for the 
day-of-operation we can obtain the probabilities for the bins 
and consequently the probabilities of the profiles.  
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This methodology translates the STRATUS forecast to 
build probabilistic capacity profiles. We call this procedure 
Fog burn-off time clustering. 

V. CASE STUDIES AND COST COMPARISONS 

The optimal number of cluster and probabilities for Naïve 

clustering and TAF based Clustering for all the three airports 

is shown in Table IV. The Naïve and TAF profiles are shown 

in Fig. 4 and Fig. 5 respectively.  

TABLE IV.  PROBABILITIES AND NUMBER OF PROFILES 

Airpor

t 

# of 

Naïve 

profile

s 

(𝒍∗) 

Pro

babi

lities 

of 

Naïv

e 

prof

iles 

(𝑷𝒊 ) 

# of 

TAF 

Clus

ters 

(𝒍∗) 

# of 

AAR 

profil

es in 

𝒄𝟏 

(𝒌𝟏
∗ )  

Proba

bility 

of 

profile

s in 𝒌𝟏
∗  

(𝑷𝟏,𝒓) 

# of 

AAR 

profil

es in 

𝒄𝟐 

(𝒌𝟐
∗ ) 

Proba

bility 

of 

profil

es in 

(𝑷𝟐,𝒓) 

BOS 4 

0.21, 

0.36, 
0.11,

0.32 

2 2 
0.45,0.

55 
2 

0.61, 
0.39 

LAX 2 
0.67,
0.33 

2 2 
0.36,0.

64 
2 

0.29,0
.71 

SFO 3 

0.25,

0.37,

0.38 

2 2 
0.46,0.

54 
3 

0.22,0

.41,0.

37 

We simulated ground delay strategies for 45 historical days 
from 2004 to 2006 for all the three airports using the GDP 
model described in section III. For SFO, we considered the 
days when the low lying marine stratus was observed. For these 
days at SFO, we generated the probabilistic capacity profiles 
for using both the TAF and STRATUS forecasts. For the Naïve 
case the profiles and probabilities were the same across all the 
days as the profiles are generated without weather forecast 
information. When applying the TAF based clustering method, 
we first determined in which of the TAF clusters a given day 
belonged to and then applied the profiles and probabilities 
under that particular TAF cluster in the GDP model. For 
example, a given day in SFO would either have two or three 
probabilistic capacity profiles depending on the classification 
of its TAF.  For DTW Profiles using RSM, Fig 3 show the 
decrease in the average TC as the iterations increase for 
different starting points for the three airports. As expected the 
average total realized costs decrease with an increase in 
iterations.  

 

 

 

Figure 3.  Decrease in average TC using RSM 

The various total costs of delay are compared to a 
Perfect Information (PI) case where the air traffic managers 
have perfect foresight about the evolution of capacity as if told 
by an “oracle”. For any historical day, we know the actual 
realized capacity and this capacity can be used in a 
(deterministic) ATFM simulation. This is equivalent to having 
one profile which is the actual realized AAR profile with 100% 
probability of occurrence in the GDP model. With perfect 
information, we can eliminate all airborne holding while 
keeping ground holding to a minimum. The average total 
realized costs are given in the Table V with the standard 
deviation in the brackets. 

TABLE V.  TOTAL AVERAGE COST 

 Airpo

rt 
PI Naïve TAF DTW 

Fog-

Burn 

off 

Naïve/DT

W 

LAX 
20.41 

(24.53) 
41.44 

(58.73) 
41.75 

(58.71) 
38.26 

(60.29) 
- 1.10 

BOS 

196.15 

(335.4

1) 

616.64 

(745.1

9) 

570.02 

(883.1

9) 

429.97 

(637.8

4) 

- 1.43 

SFO 
96.5 

(54.93) 

236.23 

 

(156.7) 

194.45 

(145.2

8) 

178.52 

(102.7

4) 

182.2 

(109.7

3) 

1.32 

We performed paired t-tests where the null hypothesis 
assumes the difference between the total costs obtained from 
the methodologies using the weather forecast and from naïve 
clustering is zero while the alternative hypothesis is the 
difference is other than zero. The values in bold italics indicate 
the cases where the null hypothesis is rejected i.e. the 
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difference non- zero at a significance level of 0.1. The table 
also shows that using TAF to generate the profiles offers 10% 
to 40% cost reduction in simulated GDPs for the different 
airports. 

The above table illuminates the fact that probabilistic 
profiles derived from weather forecasts are better in planning 
of operations as compared to profiles developed devoid of any 
forecast information. For LAX, the average costs for the Naïve, 
TAF and DTW Profile methodologies are statistically 
equivalent, even though the cost from DTW Profiles is the 
lowest. For SFO, the DTW Profiles gives the minimum average 
cost of delays. This cost is marginally lower than the average 
delay from the STRATUS forecast. The two costs are 
statistically equivalent. The profiles derived from the 
STRATUS forecast yields the roughly the same level of costs 
TAF-based DTW method with RSM. This suggests, of the 
TAF-based methods, the DTW method in conjunction with 
RSM is the most promising for application at other airports, 
where, of course, the STRATUS forecast is unavailable. It can 
be stated that inclusion of weather forecasts in decision making 
leads to lowering of average total delay costs. 

VI. CONCLUSIONS 

In this paper we have demonstrated how to employ weather 
forecasts to generate day-of-operation probabilistic capacity 
profiles. This represents steps towards the incorporation of 
weather forecast information to support probabilistic decision 
making in NEXTGEN, which can be taken without the 
expensive development of specialized weather forecast 
products. The TAF-based methodologies can be applied to any 
airport. It is shown that incorporating day-of-operation weather 
forecast information to plan the day-of-operation arrivals leads 
to a reduced realized cost when compared to profiles that do 
not make used of this information. It is important to note that 
STRATUS is designed specifically for SFO and particularly for 
the days when there is a low lying stratus over the airport thus 
its application is focused. The careful use of the TAF offers a 
similar level benefit in GDP planning as a dedicated tool 
designed at considerable expense specifically for SFO.  
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Figure 4.  Naive Profiles for BOS,LAX and SFO 

 

 

 

 

 

 

Figure 5.  TAFClustering Profiles for BOS,LAX and SFO 
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