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Abstract—The Traffic Alert and Collision Avoidance System
(TCAS) has been shown to significantly reduce the risk of
mid-air collision and is currently mandated worldwide on all
large transport aircraft. Engineering the collision avoidance logic
was a very costly undertaking that spanned several decades.
The development followed an iterative process where the logic
was specified using pseudocode, evaluated on encounters in
simulation, and revised based on performance against a set
of metrics. Modifying the logic to get the desired behavior is
difficult because the pseudocode contains many heuristic rules
that interact with each other in complex ways. Over the years,
the TCAS logic has become challenging to maintain. With the
anticipated introduction of next-generation air traffic control pro-
cedures and surveillance systems, the logic will require significant
revision to prevent unnecessary alerts. Recent work has explored
a new approach for designing collision avoidance systems that
has the potential to shorten the development cycle, improve
maintainability, and enhance safety with fewer false alerts. The
approach involves leveraging recent advances in computation to
automatically derive optimized collision avoidance logic directly
from encounter models and performance metrics. This paper
outlines the general approach and discusses the anticipated
impact on development, safety, and operation.

Index Terms—Collision avoidance systems, Traffic Alert and
Collision Avoidance System (TCAS), probabilistic models, opti-
mization.

I. INTRODUCTION

The Traffic Alert and Collision Avoidance System (TCAS)
is currently mandated worldwide on large transport aircraft
to reduce the risk of mid-air collision. TCAS uses onboard
beacon radar surveillance to monitor local air traffic. Em-
bedded in the system is logic that determines when to alert
pilots to potential collision and which vertical maneuver to
recommend to pilots [1]. The logic has evolved over the
course of many years beginning in the 1970s. The iterative
development process (top half of Figure 1) involved specifying
the logic using pseudocode and evaluating the system in
simulation using encounter models. These encounter models
were based on operational data that capture the properties
of close encounters in the airspace. The simulation results
were evaluated against a set of performance metrics, and the
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logic was revised manually to address potential performance
issues. The evolutionary development process of the collision
avoidance logic has resulted in complex pseudocode with
many heuristic rules and parameter settings whose justification
has been lost over the years. Unfortunately, due to the com-
plexity of the system, correcting issues without introducing
new vulnerabilities is very difficult and costly. Next-generation
procedures and new sensor systems will require reengineering
much of the logic and tuning many parameters.

Several factors make building a robust collision avoidance
system difficult. The system must account for state uncertainty
due to sensor noise, dynamic uncertainty in the future tra-
jectories of the aircraft, aircraft performance constraints, and
the variability in the delay and strength of the pilot response.
The system must act conservatively to ensure an exceptionally
high degree of safety, but it should minimize disruption of
normal operations. Nuisance alerts negatively impact pilot
compliance, result in unnecessary course deviation, and can
induce conflicts with other aircraft. Deciding exactly when
an alert is necessary requires carefully accounting for many



constraints and sources of uncertainty, something that human
designers are not especially well equipped to do on their own
when building a complex system.

Recent work (e.g., [2]–[5]) has pursued a new model-based
optimization approach to developing logic that has the poten-
tial to shorten the development cycle, improve maintainability,
and enhance safety with fewer nuisance alerts. This new ap-
proach involves using computers to directly optimize the logic
based on encounter models of traffic and performance metrics
(bottom half of Figure 1). Such an approach allows humans to
focus their development effort on building models and perfor-
mance metrics instead of the difficult task of optimizing the
logic. The computer-generated logic will still have to undergo
rigorous safety analysis that may result in modifications to
the model or metrics. However, the development cycle will be
shortened because the logic does not require manual revision.
Because the computer is able to take into account all possible
future aircraft trajectories and their likelihood, the optimization
is able to produce safer logic with fewer nuisance alerts than
the current version of TCAS (Version 7.1). An early prototype
system has demonstrated the strength of this approach in
simulation.

This paper provides a high-level overview of how the
encounter models and performance metrics are used in the
computer-based optimization of the logic, and it explains how
the logic is used on the aircraft. It then presents results from
various safety studies comparing the performance of the new
system with the current version of TCAS. The latter part of
the paper discusses the impact this new development process
has on the safety approval process and maintenance. The
paper concludes with a discussion of other collision avoidance
approaches and areas for further research.

II. LOGIC DEVELOPMENT

The new approach requires specifying an encounter model
and using computational methods to find the logic that op-
timizes performance against a set of metrics. The logic is
represented as a numerical table that is used during flight
to determine the expected cost of different actions (e.g., no
alert, climb, or descend) available to the alerting system. This
section discusses the process for constructing the table (left
half of Figure 2).

A. Encounter Models

Success of a collision avoidance system depends on the
ability of the logic to predict the future trajectories of aircraft
given the current state (which includes position and velocity
information) of the aircraft. Due to variability in aircraft
dynamics and pilot response to advisories, it is impossible
to exactly predict the future path of the aircraft involved in
an encounter. Given the same initial state, a wide variety of
different future trajectories are possible, some more likely than
others. When issuing an advisory, it is important to account
for the full spectrum of possible future trajectories and their
likelihood. A probabilistic model of future trajectories can be
constructed from domain expertise and recorded data [6]–[8].
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Fig. 2. Logic development and usage.

B. Performance Metrics

One of the standard safety metrics used for evaluating
TCAS is the probability of near mid-air collision (NMAC),
historically defined to be when an intruder comes within 500 ft
horizontally and 100 ft vertically [9]. In addition to safety
metrics, there are also operational metrics, such as the alert
rate, that have been used to measure how disruptive the system
is to normal operations. Additional metrics might include
the rate of advisory strengthening (e.g., changing a climb at
1500 ft/min to a climb at 2500 ft/min) and reversing (e.g.,
changing a climb to a descend advisory).

A variety of different performance metrics can be com-
bined into a single cost function by weighting the various
components. The weights influence, for example, how much
more important it is to prevent NMAC versus an unnecessary
alert. The optimal collision avoidance logic is the one that
is expected to provide the lowest expected cost. Because
the cost function defines optimality, it is important that it
truly reflects the priorities of the designers. One way to
choose the relative weighting of the performance metrics is
to vary the weighting until some safety threshold is met while
maintaining operational acceptability in terms of, for example,
alert, strengthening, and reversal rate [2].

C. Optimization

Several different computational techniques may be applied
for optimizing decision logic based on a probabilistic model
and cost function [10]. One approach, called dynamic pro-
gramming (DP), has been shown to work well for airborne
collision avoidance [2]. DP requires the dynamics to be
described as a finite state model. However, the various state
variables, such as the climb rates of the aircraft involved
in the encounter, are naturally continuous quantities. The
continuous state variables must therefore be discretized into
a finite set of values. The finer the discretization, the better
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Fig. 3. Discrete transition model from a single state. The transition
probabilities in the figure are notional, but they would be derived from the
encounter model. In a realistic model, non-zero probability may be assigned
to several dozen next states instead of only three as shown in the figure.

the finite state model represents the dynamics, but it comes
at the cost of additional computation and memory storage. In
order to adequately model the aircraft dynamics for collision
avoidance, millions of discrete states are required.

Once the state space has been discretized, the probabilistic
transitions between the states for the different actions must be
inferred from the encounter model. Figure 3 shows a notional
example of the transitions available from one of the states.
From the state on the left, three actions are available: no
alert, climb, and descend. The next state is selected randomly
according to the probabilities shown in the model. The figure
shows only three possible resulting states for each action, but
in a realistic model, there may be dozens. The methodology
for determining these transition probabilities is detailed in [2].

Once the cost function has been chosen and the model
discretized, DP may be applied to solve for the best possible
action to execute from every possible state. The best action
to take from a particular state is the one that minimizes the
expected cost. In the process of determining the best action
from each state, DP computes the expected cost of executing
each action from every state for one step and then continuing
with the optimal strategy. The expected cost associated with
every state and action pair is stored in a large table. This table,
which essentially represents the logic, is what is used in real
time on the aircraft to decide when and how to alert.

One potential limitation of this optimization approach that
relies upon the discretization of the encounter model is that

the number of states grows exponentially with the number of
state variables. However, by leveraging the structure inherent
in the problem, the complexity of the problem can be reduced
[11]. To adequately represent logic for encounters in three-
dimensions using a naı̈ve discretization, a table on the order of
1 TB is necessary. By carefully decoupling the horizontal and
vertical dynamics, the storage and computational requirements
are reduced by a factor of 2000. The current prototype logic
requires only 500 MB of memory, which is certainly manage-
able with current technology, and it is feasible to accommodate
many more states if it is later determined that modeling
additional variables is necessary. The total time required for
computing the optimal logic for the current prototype system
is three minutes on a single processor.

Since the collision avoidance logic is critical to safety, it is
important for humans to understand and be able to anticipate
the behavior of the system. One way to visualize the logic is
as plots of the alerting regions over slices of the state space.
These logic plots play an important role in the development
phase, allowing the designers to quickly assess how changing
different cost or model parameters affects the behavior of the
logic without having to rely on simulation.

Figure 4 shows two examples of such plots for a logic
optimized according to a particular cost function and dynamic
model. In the first plot, both aircraft are initially level. In
the second plot, the own aircraft is initially climbing at
1500 ft/min. The blue region indicates where the logic will
issue a descend advisory, and the green region indicates where
the logic will issue a climb advisory. Figure 4(a) indicates that
the own aircraft should descend when the intruder is above and
climb when the intruder is below. The logic does not alert in
the notch on the right side of the alerting region even though
the vertical separation is small. The logic delays alerting until
it is more certain whether the intruder will end up above or
below the own aircraft. In Figure 4(b), the logic issues a climb
advisory in some cases when the intruder is above the own
aircraft when there is insufficient time for the own aircraft to
accelerate downwards to miss the intruder.

III. LOGIC USAGE

As discussed in the previous section, the logic table is
computed offline during the development phase. All of the
complexity of the logic is represented as a table of expected
costs instead of heuristic rules specified by pseudocode. The
usage of the logic table during flight (right half of Figure 2)
is outlined in this section.

A. State Estimation

The aircraft receives sensor measurements of the local traffic
environment. Due to sensor limitations and noise, it is not
possible to infer the state of the environment exactly. The
current TCAS sensor provides fairly accurate range measure-
ments of intruding aircraft, but the bearing measurements are
relatively noisy and the altitude of the intruder is quantized
[12]. TCAS currently uses a set of filters to estimate the state
of the environment from the noisy measurements.
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(b) Own aircraft climbing at 1500 ft/min, intruder level

Fig. 4. Example logic plots for slices of the state space where no advisory
has yet been issued. The shape and size of the alerting regions depend on the
cost function and model.

The prototype system can be adapted to accommodate dif-
ferent surveillance systems with different error characteristics.
The state estimation process requires a model of the sensor
that specifies the probability of receiving different sensor
measurements given different true states of the environment.
A process known as recursive Bayesian estimation uses the
sensor model and dynamic model to efficiently infer a prob-
ability distribution over the state space from a sequence of
observations [13]. The current TCAS system does not infer a
full probability distribution over states; it uses a single point
estimate. By explicitly taking into account state uncertainty,
the system can be made more robust to sensor error, resulting
in a lower alert rate and improved safety [14].

There are different ways to represent the state distribution.
One method that is flexible enough to accommodate non-
Gaussian distributions is to use weighted, deterministically-
chosen state samples [15]. Such an approach has been widely
used for tracking and state estimation, and it has been shown to
work well in practice for collision avoidance. Using a weighted
sample scheme (illustrated in Figure 5) makes advisory selec-
tion based on expected cost straightforward.
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Fig. 5. Notional state distribution representation. The vertices of the grid
correspond to discrete states. The red points correspond to state distribution
samples with the specified weights. Determining the expected costs for the
various samples requires interpolating values in the logic table at the discrete
states enclosing the samples. The relative contributions of the enclosing
discrete states to the value associated with the samples are indicated by
their shading. To determine the overall cost for each action given this state
distribution, the interpolated values are averaged together using the weights
assigned to the samples.

B. Advisory Selection

Choosing the best advisory involves computing the expected
cost for each of the advisories available to the system given
the current state distribution. For each of the weighted samples
representing this distribution, the expected cost of each action
is determined by interpolating values in the logic table. An
overall expected cost for each action is computed by averaging
the expected costs using the weights associated with the
samples. The system then simply executes the action with the
lowest overall expected cost. Because this process involves
simple table lookups and interpolation, deciding whether to
alert and which advisory to issue is extremely fast.

C. Coordination

In situations where both aircraft in an encounter situation
are equipped with a collision avoidance system, it is important
that advisories be coordinated to reduce the risk of inducing
collision. For example, if two aircraft have slightly different
views of the world due to sensor error, there is some risk
that the two collision avoidance systems may independently
issue climb advisories. To prevent such situations, TCAS
currently sends a coordination message to the other TCAS
unit warning it to not issue advisories in the same direction.
Conflicts can still occur due to timing, and are resolved based
on a unique address number assigned to each aircraft. In the
event of a multiple-threat encounter as described below, such
coordination is performed pairwise with each TCAS-equipped
threat, coordinating only the component of the composite
advisory that is due to that other aircraft.



It is straightforward to apply the same general coordination
strategy as TCAS to the new expected cost approach [2]. If the
system receives a message to not climb, for example, it will
remove all inconsistent advisories from consideration and issue
whichever remaining advisory has the lowest expected cost.
Such a simple strategy is able to significantly reduce the risk
of collision. Adopting the same coordination strategy as TCAS
may simplify interoperability of next-generation systems with
existing TCAS equipment.

D. Multiple Threat Resolution

Although encounters involving two or more intruders are
relatively rare in the current airspace, the collision avoidance
logic must be robust to such situations. The TCAS pseudocode
that governs the resolution of multiple threats is the most
complicated part of the logic. The logic involves choosing
advisories for each of the threats independently and then
arbitrating between them. A similar strategy can be used with
the new method, but some recent research has explored simpler
methods that involve combining action costs associated with
different threats and then choosing the action with the lowest
overall expected cost [2]. The truly optimal solution would
involve incorporating all intruders into a dynamic model and
solving for the optimal logic, but the additional intruders can
make the number of discrete states explode. However, simply
combining the costs associated with the various intruders in
isolation has been shown to result in better performance than
the current version of TCAS [2].

IV. EXAMPLE ENCOUNTER

Figure 6 shows the vertical profile of a randomly generated
encounter where TCAS induces an NMAC. The own aircraft
is shown flying from the left, and the intruder approaches
from the right. The optimized logic issues a descend to pass
below the intruder 17 s into the encounter. The expected cost
of issuing a descend advisory is approximately 0.00928, lower
than the expected cost for issuing a climb advisory (0.0113)
or for not issuing an advisory (0.00972). After the descend
advisory, the intruder begins to increase its descent, causing
the optimized logic to reverse the descend to a climb. The
pilot begins climbing three seconds later, resulting in 595 ft of
vertical separation at closest approach.

TCAS initially issues a climb advisory 4 s into the encounter
because it anticipates, using its deterministic dynamic model,
that by climbing it can safely pass above the intruder. Later,
when the own aircraft is executing its climb advisory, TCAS
reverses the climb to a descend because it projects that
maintaining the climb will not provide the required separation.
TCAS strengthens the advisory 3 s later, but fails to resolve
the conflict. The aircraft miss each other by 44 ft vertically.

Although this is just one example encounter, it illustrates the
behavior that is typical of the optimized and TCAS systems.
The optimized system generally waits a little longer than
TCAS before it commits to a particular advisory, allowing it to
provide a greater level of safety while alerting less frequently,
as discussed in the next section.
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Fig. 6. Example encounter comparing the optimized system to TCAS.

V. PERFORMANCE EVALUATION

Due to their safety-critical nature, collision avoidance sys-
tems must undergo rigorous analysis before deployment in the
airspace [9]. Civil aviation authorities require a combination of
flight tests and detailed simulation studies to ensure effective-
ness and safety. Flight tests are useful for evaluating the system
in actual operation, but only a few situations can be examined
due to time, cost, and safety constraints. Simulation studies
are required for testing the robustness of the system to a wide
variety of encounters. If the encounter model is representative
of those expected to be found in the airspace, then the
actual probabilities of different events, such as NMAC, can be
estimated through Monte Carlo simulation. The results of such
simulations were a major factor contributing to the certification
and eventual mandate of TCAS. Any new system would also
need to be evaluated in this way, and now there are higher-
fidelity models based on much larger volumes of radar data
to support safety analysis [7].

Preliminary safety studies have been conducted on the
prototype logic [2]. Table I summarizes results from one
million simulated encounters with a single intruder equipped
with a transponder but no collision avoidance system. The
same surveillance model and encounter scenarios were used
for evaluating both systems. For the particular cost function
chosen for Table I, the optimized logic is twice as safe as
TCAS while alerting less than half the time. The optimized
logic also reversed less than a quarter as often as TCAS,
but it strengthened its advisories significantly more frequently.
Operationally, strengthening is more acceptable than reversing.
The cost function, though, can be adjusted based on safety
community feedback to reduce the rate of strengthening ad-
visories. However, as can be expected, reducing the rate of
strengthening by increasing its cost relative to the other metrics
will result in more NMACs, alerts, or reversals. A longer report
[2] discusses results of simulations with equipped intruders,
multiple intruders, and different sensor noise levels.



TABLE I
PERFORMANCE EVALUATION

TCAS Optimized System Ratio

Pr(NMAC) 1.43 · 10−4 6.98 · 10−5 0.49
Pr(Alert) 5.03 · 10−1 2.01 · 10−1 0.40
Pr(Strengthening) 1.18 · 10−2 1.07 · 10−1 9.04
Pr(Reversal) 3.26 · 10−3 7.99 · 10−4 0.25

Safety curves are one way to evaluate different systems
without committing to a particular setting of parameters [16].
Figure 7 shows safety curves generated using a simplified
encounter model. One curve shows the performance of the
optimized system while varying the alert cost parameter. The
other curve shows TCAS performance as the sensitivity level
parameter is varied. Since there are points on the optimized
curve that are above and to the left of all the points in
the TCAS curve, the optimized system dominates the TCAS
system with respect to the safety and alert metrics.

Choosing appropriate cost parameters will require extensive
discussion within the safety community. However, deciding the
trades between, for example, strengthening rate and reversal
rate is much more straightforward than deciding whether to
add an additional rule to the TCAS pseudocode or change
a parameter in the logic. The focus of human effort in the
new approach is on balancing concrete objectives rather than
designing the actual logic.

VI. CERTIFICATION PROCESS

Avionics for collision avoidance require certification by civil
aviation authorities. The certification of systems built using
the new approach is expected to follow a process similar
to that used for legacy TCAS. The safety approval process
for collision avoidance systems differs from typical avionics
development due to the complexity of the logic, liability
issues associated with collision avoidance, and the benefits the
system provides to the international civil aviation system. For
TCAS, the logic was specified in the Minimum Operational
Performance Standards [1]. These common standards were
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Fig. 7. Safety curves comparing the alerting and safety performance of legacy
TCAS with an optimized collision avoidance system. The curve for TCAS
was traced by varying the sensitivity level, and the curve for the optimized
system was traced by varying the cost of alerting.

developed by a community of experts and are recognized as the
certification standard for TCAS equipment. Individual vendors
implement the TCAS specification, which is then certified by
civil authorities. Thus, it is useful to divide the discussion of
certification into development and implementation phases.

A. Certification of Logic Specification

Development of new logic for collision avoidance will
require the participation of aviation stakeholders, including
civil aviation authorities, operators, avionics and airframe
manufacturers, and technical experts. The community stan-
dards development process differs from that of a single
vendor applying for certification in that it takes place in a
more collaborative atmosphere without strictly defined process
standards for certification. Stakeholders and regulators agree
on minimum acceptable specifications and safety performance
by vetting analysis and proposals through a standards de-
velopment organization. For complex avionics, the standards
development process typically results in certification to higher-
level safety standards, such as a target level of safety, rather
than to lower-level regulations.

Certification assures that avionics performance will be safe
and operationally acceptable when implemented. Historically,
acceptability of collision risk has been judged by using a
risk ratio, defined as the ratio of NMACs with an adopted
change to NMACs without. More recent TCAS changes have
been approved against a threshold level of risk (e.g., the rate
of NMACs per hour) [9]. Operational acceptability has been
measured by false alert rates, reversal and strengthening rates,
and flight path deviations.

Tradeoffs between safety and operational metrics can be in-
corporated directly into the optimization by choosing weights
in the cost function, making tradeoffs more transparent. En-
hanced transparency facilitates technical review and confi-
dence in a community setting. An additional advantage of the
model-based approach is that the resulting safety performance
is guaranteed to be optimal under the modeling assumptions.

Airworthiness certification policies require the assurance of
integrity of airborne software. One acceptable means, and the
one typically used for avionics, is provided by RTCA DO-
178B [17]. DO-178B specifies several objectives to be met
at different levels of software specification from high-level
requirements to executable code. The decomposition presumed
by the standard does not readily apply to the generation
of a logic table through model-based optimization. In that
approach, high-level requirements in safety and operational
acceptability are framed in the cost function and optimized
directly. Verification that the objectives are met can be done
through Monte Carlo simulation or direct evaluation of the
logic table, reviewed by community experts. The evaluation
is assured directly from the outputs of the simulation, not
by tracing the implementation of requirements. In this im-
plementation, the rigor of assurance measures required of the
computer analysis generating the lookup table is unclear, and
will require guidance from approval authorities.



To be implemented by vendors, the logic must be specified
using some representation. Past versions of TCAS were spec-
ified using both pseudocode and state charts, both sufficiently
complex to be understood only by experts. The new logic
uses a lookup table that deterministically and unambiguously
specifies the optimal alerting action for every possible state.
The process of generating this lookup table is similar to
generating navigational databases, where software tools are
used to encode derived data and ensure its integrity when
transmitting to different users. Similar methods should be
investigated to ensure the integrity of the logic table [18].

B. Certification of Logic Implementation

It is expected that vendors will implement state estimation
and collision logic with sensors, displays, and other system
elements that comply with a common minimum specification.
Avionics must be certified as compliant with the minimum
specification to be used on aircraft. Several methods are used
to test compliance. One method currently used with TCAS
is to test the system in simulation on a limited number of
test cases and compare it to a certified reference system. With
legacy TCAS, it was not possible to rigorously verify the full
implementation. With the new approach, it may be possible to
efficiently test the entire state space to ensure that the logic
is implemented correctly. A logic table reduces the amount of
code required to implement and verify, lowering vendor cost.

VII. MAINTENANCE

The airspace will continue to evolve with the introduction of
new procedures, aircraft capabilities, and sensor systems. To
ensure a high degree of safety while maintaining operational
acceptability, collision avoidance systems will also need to
evolve. Changing the TCAS pseudocode is very difficult due to
the complexity of the logic and the ways in which the various
rules and parameters interact with each other. The changes
incorporated since TCAS was originally introduced required
tremendous effort, and it is not clear that the process of making
small updates to the pseudocode will scale well into the future.

Adopting the new development approach will likely require
equipping aircraft with new hardware, although the surveil-
lance system can be left intact if so desired. The current
TCAS equipment does not possess the memory capacity to
hold the logic tables. However, once the investment has been
made in equipping aircraft with hardware that accommodates
a tabular representation of the logic, the system can be updated
as necessary by uploading revised tables.

Reoptimizing the logic in response to changes in the model
or metrics is much easier than trying to incorporate changes
in the pseudocode. Of course, Monte Carlo analysis is still
required to validate the reoptimized logic table before de-
ployment. Manufacturers will not need to implement any new
code, which will lower long-term development cost and speed
the deployment of logic changes. Although the short-term
development cost for introducing new logic might be more
significant than evolving the current TCAS logic, there are
important long-term benefits for such an investment.

VIII. ALTERNATIVE APPROACHES

A wide variety of other approaches to collision avoidance
have been proposed [19]. Some approaches (e.g., [20]) use
nominal trajectory prediction, like TCAS, where a determin-
istic model is used to extrapolate the positions of the aircraft
into the future. If an intruder is predicted to come within
some protected zone in the near future, the system alerts.
The problem with this approach is that it does not explicitly
account for low-probability events that can lead to collision.
To make the logic robust to deviation, such systems need to
incorporate complex heuristics. Another approach is to use
worst-case trajectory prediction, where the system examines a
range of possible future maneuvers and determines whether
any of them results in NMAC. One disadvantage of this
approach is that it can cause excessive alerting.

Probabilistic trajectory propagation, which is central to the
approach proposed in this paper, tends to result in much
more robust behavior because it takes into account the full
spectrum of future trajectories as well as their likelihood [19].
However, there have been probabilistic modeling approaches
suggested in the literature that do not use the same optimiza-
tion method presented here. Many systems (e.g., [21]–[23])
adopt a threshold-based alerting strategy where an alert is
issued if the probability of collision passes above some fixed
value during the encounter. Such systems tend to perform well
in practice, but they are not optimal in general.

It should be mentioned that there are other methods for
computing optimal strategies given a probabilistic model and
cost function that do not involve discretizing the state space
[24]. There has been a tremendous amount of research on such
methods in the artificial intelligence and operations research
communities that could be leveraged for building better colli-
sion avoidance systems. However, the discretization approach
with its expected cost table works well and is conceptually
easier to understand than some of the other methods. The main
limitation of the discretization approach is that the number of
discrete states grows exponentially with the number of state
variables. Current hardware easily supports the number of
states required by the model to represent the logic table, so
there is little motivation to pursue other methods at this time.

IX. CONCLUSIONS AND FURTHER WORK

This paper has summarized ongoing work exploring a new
approach for automatically deriving robust airborne collision
avoidance logic from encounter models and performance met-
rics. Experiments have demonstrated that the approach has the
potential to significantly improve safety while reducing the rate
of unnecessary alerts compared to the current TCAS logic.
The approach focuses human effort in the areas where it is
needed most, in building models and deciding on performance
metrics, and leaving the difficult task of optimizing the logic to
computers. Such an approach to developing and maintaining
logic will become increasingly important as the airspace
evolves with the introduction of new surveillance systems,
procedures, and aircraft.



Key challenges in certifying the new approach will be soft-
ware certification and cost function development. Equivalent
approaches to current software certification approaches will
need to be coordinated, but will overlap well with current
community development approaches. The logic offers several
certification advantages, including direct specification of safety
and operational tradeoffs, reduced code to develop and inspect,
and robustness to modeling assumptions.

Software for computing the logic tables and evaluating them
in simulation has been implemented and validated. Additional
research is required to further improve coordination between
aircraft and the handling of multiple simultaneous threats.
Additional analysis is required to ensure interoperability with
existing TCAS systems. Before committing to a particular
encounter model or cost parameters, it is important to ensure
that there is consensus within the community that the model
captures the features of real encounters and that the cost
parameters adequately balance performance considerations.

This new approach is a significant departure from how
people have thought about collision avoidance in the past.
The idea of computer optimization of decision logic using
probabilistic models will likely become increasingly important
as the air traffic system becomes more complex. Such an
approach will be useful in the design of airborne and ground-
based sense-and-avoid systems for unmanned aircraft as well
as other decision support tools for air traffic management.
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