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Abstract—The gradual introduction of advanced ATM proce-
dures such as Continuous Descent Approaches (CDA) creates
a challenge when balancing the capacity-demand of arrival
traffic in the presence of constrained ground (runway, taxiway,
gate) resources. Part of the challenge is to understand the
interdependency between spatial-temporal distribution of arrival
traffic (traffic distribution) and the dynamics of ground resources
to better manage, sustain and improve the airport throughput
capacity and to minimize delays. In this paper, we use the Com-
putational Red Teaming (CRT) Framework to identify patterns
in arrival traffic and ground events that lead to delays in dynamic
CDA scenarios. The scenarios represent the interaction of ground
events with traffic distributions.

The search engine in CRT relies on co-evolutionary search,
with the reciprocal interaction of traffic distributions and ground
events evolving to identify bottlenecks in the system. With each
interaction a variety of metrics are recorded which are then
data mined to identify patterns that lead to delays. Results
identified scenarios whereby delays become seriously significant.
For example, for a model of the Sydney domestic terminal area
in a dynamic CDA scenario, flights arriving from the South-
East direction with an average inter-arrival time of 53 sec can
cause significant delays if runway 16L is impacted by a ground
event. Another example identified taxiway C as a critical ground
resource for arrival throughput capacity.

I. INTRODUCTION

It is now well recognized in the literature that air traffic
management (ATM) challenges cannot be addressed in isola-
tion. The US NextGen (Next Generation Air Transportation
System) [1] highlights the need for modern airport ground
movement processes that are strategically planned and better
aligned with terminal area (TMA) and en-route constraints in
order to achieve gate-to-gate trajectory-based operations.

In SESAR (Single European Sky ATM Research) [2] con-
cept of operations, airports are fully integrated into the ATM
network as nodes in the system. It is also envisioned in SESAR
that the combination of Trajectory Management, Airborne
Spacing tools and precision navigation techniques will reduce
air and ground holding and sustain advanced ATM procedures
such as Continuous Descent Approaches [3] (CDA), thus lead-
ing to reduced environmental impact of aviation as specified
in the SESAR goals.

Existing demands on ATM systems routinely exceed the
capacity of airports, leading to air-traffic-imposed ground and
airborne delays of aircrafts. With the gradual introduction of
advanced ATM procedures such as CDA, this problem takes on
a whole new dimension: how to balance the capacity-demand
of arrival traffic with constrained surface (runway, taxiway,
gate) operations in order to derive maximum benefits from
advanced ATM procedures. Understanding the interdependen-
cies between the spatio-temporal distribution of arrival traffic
and the dynamics of constrained ground resources (runways,
taxiways and gates) is vital to better manage, sustain and
improve the airport throughput capacity and to minimize
delays.

The terminal area, generally a region of radius of 30-40
nm around an airport, forms the critical interface between the
arrival airspace and the airport. EUROCONTROL CFMU’s
Network Operations Report for 2010 [4] shows that the
proportion of terminal area and airport related delays increased
significantly, accounting for 40% of the total delays. Possible
solutions for reducing congestion in the terminal area can be
divided into four major categories (in no particular order):

1) Reorganizing the existing flight schedule [5].
2) Rationing the use of existing capacity (limiting the

number of landing slots) [6].
3) Physically increasing the landing capacity (ground in-

frastructure expansion) [7].
4) Using existing airport capacity more efficiently (improv-

ing the air traffic flow by better management of air and
ground resources) [8]. This is the approach tackled in
this paper.

Ground Events involves all the movements on runways,
taxiway, and gate activities. Constrained Ground Events means
a disruption to the available surface movement resources. For
example, snow, ice, slush or water on a runway can reduce
aircraft braking and directional control. The consequences for
ground operations may include increased runway occupancy
time; some shorter runways may not be usable; temporary
runway closure due to the need to remove accumulated
snow [9]. This, in turn, affects the options for runway exits,



which affects taxi routing flexibility, potentially leading to
arrival taxi delays and possible surface congestion. An increase
in runway occupancy time leads to a reduction in airport
arrival rate (throughput), due to the need for increased inter-
arrival spacing. This reduction is aggravated by the closure of
runways and when certain runways are unusable.

Innovative approaches are required to address this problem,
especially in the terminal airspace area given constrained
surface movements [10]. A system-level approach, where an
ATM problem is addressed as part of the environment it
operates, is vital to answer some of its key issues [11],
[12]. As a complex system, it is the complex interaction
between ground events (runway closure, gate not available,
visibility levels etc.) and air events (traffic distribution, wake
separations, bad weather, arrival sequence etc.) which affect
the overall airport throughput capacity and delays.

In this paper, we use the Computational Red Teaming
(CRT) [13] approach to identify vulnerabilities in dynamic
CDA, ground movements and ground events interaction. CRT
is a computational environment whereby problems compete
with solvers; thus problems are evolved to stress-test a system
to identify its points of failures. The idea here is to play
the devil’s advocate where we evolve increasingly complex
traffic patterns and constrained ground events which may
lead to identifying tipping points in an advanced air traffic
procedure operations [14] and to discover implicit relations
in the scenarios patterns that lead to them using data mining
techniques.

Various approaches to CDA in the literature considers flight
in the transition airspace only and do not consider their
interaction with ground resources/events. The air and land side
represent each a sub-network of the overall traffic network.
Studying each sub-network in isolation may underestimate
the impact of an event. For example, the Dynamic CDA
concept, co-developed by authors [15], is used in this paper
as the advanced ATM procedure for arrival traffic in the
transition airspace. However, CDA or dynamic CDA needs
to be integrated with ground movements to evaluate its real
impact. This paper takes this extra step by incorporating
the ground events in the evaluation of dynamic CDA. The
high-fidelity Air Traffic Operations & Management Simulator
(ATOMS) [16], is extended with an arrival manager to evaluate
the scenarios. As a case study, the Sydney domestic TMA is
used for the analysis in this paper. Co-evolution [17] is used
as the search technique.

The rest of the paper is organized as follows: we give
an overview of Dynamic CDA concept and Co-evolutionary
approach, then we introduce the CRT framework and process
followed by design of traffic and ground event scenarios. The
experimental design are then presented followed by results and
conclusions.

II. BACKGROUND

A. Dynamic Continuous Descent Approaches

A variety of advanced air traffic procedures have been
proposed and developed to manage the traffic growth in

Fig. 1. Conceptual representation of transition airspace divided into concen-
tric circles and wedges acting as trajectory change points for dynamic CDA
trajectory generation.

terminal airspace, such as Point Merge, Tailored Arrivals,
Collaborative Decision Making (CDM) and CDA. In CDA, the
descent is with no level altitude segments, which are common
in traditional step-descent approaches. The goal of developing
a CDA is to keep the aircraft thrust as low as possible and the
aircraft at higher altitudes for as long as possible. An ideal
CDA allows the engines to be at idle thrust during most of
the descent.

In Dynamic CDA [15], aircraft-specific CDA routes are
generated in real-time, that are both laterally and vertically
optimized on given objectives (for e.g. noise, emission and
fuel), from an Initial Approach Fix (IAF= 10, 000 ft) to
Final Approach Fix (FAF= 2000 ft). This approach has
demonstrated that significant reduction of emission and noise
can be achieved, compared to fixed CDA routes. The use of
real-time aircraft position and performance envelope leads to
inherently safe CDA routes, which can be converted into a
set of artificial waypoints for continuous descent in transition
airspace. With increased onboard computing power, advances
in digital data transmission and proposed real time data link
between controllers and pilots (CDPLC), up-linking and down-
linking of trajectories is possible. This makes the realization
of real time CDA route generation a near possibility.

As illustrated in Figure 1, these CDA trajectories are gen-
erated by discretizing the terminal airspace into concentric
cylinders with artificial waypoints, and uses enumeration and
elimination (using aircraft turn angle, deceleration rate &
Speed) from one waypoint to another to identify all the
possible routes. For each transition a variety of metrics are
computed, including noise, emission and fuel burn. As illus-
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Fig. 2. 3D view of dynamic CDA trajectories generated from one of the
entry point in the transition airspace. The figure also highlights the four non-
dominated trajectories on noise, emission and fuel burn.

trated in Figure 2, from the resulting set of possible CDA
routes, those routes are identified that represent the best trade-
off on the given objectives. Then based on operational priority
of each objective and using a simple search algorithm one of
these routes is then uploaded in the flight FMS which then
executes the CDA procedure. Dynamic CDA is used as an
example arrival procedure in this paper, and distance and fuel
burn are used as two objectives for CDA route planning.

B. The Search Technique

The CRT framework requires a search engine. In this paper,
we use co-evolution, an extension of traditional evolutionary
algorithms (EAs). Two types of co-evolution exist: cooperative
and competitive. the former is characterized as evolution of a
host species and its parasites in which both parties benefit.
Whereas evolution of a predator and prey is an example of a
competitive co-evolutionary relationship.

Initial co-evolutionary models were extended by De
Jong [18], Paredis [19], and others, resulting in a new type
of algorithms called Co-Evolutionary Algorithms. In the evo-
lutionary computation community, co-evolution is defined as
a phenomenon occurring when [18]

• Two or more populations of solutions simultaneously
evolve, and presumably improve;

• There is no single and static fitness function;
• Each solution’s fitness is a function of its interactions

with solutions from other co-evolving populations. In this
case, a dynamic evaluation of fitness for both populations
takes place.

One of the methods for defining cooperative co-evolutionary
models, which is used in this study, involves two species. Each
species is evolved in its own population, and adapts to the
environment through the repeated application of EAs. To eval-
uate individuals from one species, collaborations are formed

Fig. 3. A conceptual co-evolution model. The diagram demonstrates the
idea of co-evolution as two or more independent populations evolve, with the
fitness of an individual in one population relies on its reciprocal interaction
with individuals from the other populations.

with representatives (best individuals from each species) from
each of the other species. A simple model of co-evolution is
illustrated in figure 3.

The challenge here lies in how to identify and represent each
species, provide an environment in which they can interact and
co-adapt, and assign credit to them for their contributions to
the problem-solving activity such that their evolution proceeds
without human involvement.

III. THE COMPUTATIONAL RED TEAMING FRAMEWORK

CRT is a framework for identifying vulnerabilities in sys-
tems. It designs a blue population, representing the concepts
we are interested to test, and a red population representing
the events or agents attempting to create the vulnerability in
the system. The blue and red populations then play against
each others through evolutionary, co-evolutionary or other type
of search methods. Data are recorded then analyzed using
data mining, visualization and other data analysis approaches.
Patterns of vulnerabilities are grouped and summarized to the
decision maker.

Figure 4 illustrates the cooperative co-evolutionary tech-
nique as the search technique for the CRT framework. As
shown in figure 4, there are two populations of partial solutions
which evolve together:

• a population of Arrival Traffic Scenarios
• a population of Surface Events Scenarios

A candidate solution is formed by combining a member
from a population of traffic scenarios with a member from a
population of event scenarios. This implies that the fitness of
any member from the population of traffic scenarios or of the
population of surface events scenarios cannot be determined
independent of the other population.



Fig. 4. CRT Framework using co-evolutionary search with Flight population
and Ground Event population.

This candidate solution is then feed into air traffic simulator
which simulates and evaluates the scenario for the given
objective values. This objective value is then used to updated
the fitness of the candidate solution (higher the delay in a
scenario higher the fitness). With each evaluation a variety
of metrics are recorded which are (after a certain number of
evaluation) then analyzed to identify implicit patterns that lead
to delays in the air and ground traffic scenarios.

The populations of air traffic scenarios and event scenarios
co-evolve as follows. First, each population (traffic and event)
is initialized. Attention turns first to the population of traf-
fic scenarios, as shown in the lower left part of Figure 4.
This population is evaluated by selecting each individual
and combining it with a randomly selected member of the
population of event scenarios. These two combined individuals
form a complete candidate solution for an air traffic scenario.
This candidate solution is evaluated in ATOMS: its fitness
value is calculated and assigned to the individual from the
population of traffic scenarios only. This process is repeated
for all individuals in the traffic population. Once the entire
population of traffic scenarios has been evaluated, the best
individual(s) is selected to be used in evaluating the individuals
in the population of event scenarios. Evolutionary operators
(mutation and crossover) are then applied to produce a new
generation of traffic scenarios.

At this point, the algorithm’s focus switches to the popu-
lation of event scenarios (the lower right part of Figure 4).

Each individual from the population of event scenarios is
combined with the previously determined representative(s)
from the population of traffic scenarios, and its fitness value
is evaluated. Representative event scenarios are selected to
be used in the next round of evaluating individuals from the
population of traffic scenarios, and evolutionary operators are
applied to produce a new generation of event scenarios. The
focus then switches back to the population of traffic scenarios.
The entire process is repeated for the pre-determined number
of generations, which is one of the parameters of the co-
evolutionary algorithm.

To play devil-advocate, the co-evolutionary process attempts
to maximize the delay of the system by evolving combinations
of arrival traffic distribution and ground events which ranked
higher (generated higher delays) in the co-evolutionary pro-
cess.

At the conclusion of the search, data mining techniques are
used to mine the data generated by co-evolution to extract
patterns. In this paper, we rely on visualization and summa-
rization as the data mining tools but we can also use more
complex methods when needed as we demonstrated in some
of our previous work [14].

A. Population of Traffic Scenarios

Each scenario is represented by a chromosome, this chro-
mosome has a set of values (genes) characterizing the temporal
and spatial distribution of flights in the airspace, aircraft type
(light, medium, heavy) and the designated runway at the
destination airport. As shown in figure 5, there are 12 genes
in each chromosome. The gene values that are encoded are as
follows:

• Time (T ): Parameter for inter-arrival time distribution.
This varies in the interval [45 90] seconds.

• σGA controls the distribution around the flight activation
point. This value is selected randomly from the interval
[0 1];

• µ represents the selection probability of a flight activation
point on the Outer Marker [0 103];

• (An) There are three genes that determines the aircraft
type (light, medium and heavy). It is randomly selected
from the interval [0 3] and floored;

• Rn There are six genes that determines the runway
selection probability. It is randomly selected from the
interval [0 1].

T controls the activation time (Temporal dimension) of a
flight. The aircraft type and runway An and Rn are selected
probabilistically according to the probability values in the
chromosome. µ and σGA parameters control the flight activa-
tion point (Spatial dimension). If N represents the maximum
number of activation points on the outer most circle (see
Figure 7), then the activation point σ of a flight is generated
by the following equations:

σdb =
σGA ×min{N − µ, µ}

3
(1)



Fig. 5. Traffic chromosome design, showing the genomes which encode
spatial and temporal distribution for a flights in a scenario.

Z = Gaussian[0 1] (2)

σ = σdb × Z + µ (3)

Each chromosome is decoded into a set of flights by re-
sampling it a desired number of times. The decoding process
uses aircraft aerodynamic data, airport data (to assign taxiway
and gate based on assigned runway and aircraft type) and
airspace configuration data to generate flight plans for desired
number of flights (100 in our case) in a traffic scenario.

B. Population of Event Scenarios

An event population represents a set of constrained ground
events. To encode this into a chromosome we first developed
an “event-table” data structure, which contains all the ground
resources (runway, taxiway and gate) along with all the
possible events that can be associated with these resource. As
illustrated in figure 6, each combination of a surface resource
with an event is given a unique event id. For each resource
there are seven possible events.

• E1: Resource available for heavy and medium aircrafts
only;

• E2: Resource available for heavy and light aircrafts only;
• E3: Resource available for heavy aircrafts only;
• E4: Resource available for light aircrafts only;
• E5: Resource available for medium aircrafts only;
• E6: Resource available for heavy, medium and light

aircrafts ;
• E7: Resource unavailable;
Each event scenario in a population has 10 chromosomes

(for 10 events), and each chromosome has 3 genes. The first
gene in the chromosome is Event-Id, uniformly initialized in
the interval [0 1], this value is then used to select Event-ID
value from the event table in the decoding process.

Fig. 6. Event chromosome design, showing the genomes which encode the
event id, event activation time and its duration. The Event table which encodes
all the possible events associated with a surface movement resource is also
shown.

Every event in a scenario is assigned an activation time and
a duration for which it will be active. As illustrated in figure 6
the second gene in event chromosome is the Event-Start-Time
which is uniformly initialized in the interval [0–180] minutes
and the third gene is Event-duration-time which is uniformly
initialized in the interval of [0-120] minutes. This chromosome
are then translated into a set of ten events for a given traffic
scenario.

C. Ground Resource Allocation

Ground resources include runway, taxiway and gates. Each
one of them can only be used exclusively by an aircraft to
which it is assigned to for a certain duration. An aircraft is
assigned its designated runway, taxiway and allocated gate
at the arrival airport in the decoding process. However, this
may change, at the time of CDA route generation, based on
ground events such as runway closure, taxiway unavailability,
gate closure, etc.

The interconnection between these resources, and how one
leads to another, is modeled as a network. This network data
structure stores all the possible connections from runways to
different taxiways, and from taxiways to different gates. If for
example an arriving aircraft is assigned a particular gate, the
network stores the link for various networks available to route
the aircraft to that gate.

If an aircraft is to assign a new runway/taxiway/gate due
to unavailability of a certain resource, then the aim is to meet
the scheduled surface route while minimizing changes in the
existing route. If there is no possible alternative to lead an
aircraft from its assigned runway to its assigned gate then an
alternative gate is selected. If the runway is completely closed,
the search is performed using the next available runway and
the aircraft ground route is updated accordingly.



D. Objective Function

The objective evaluation (Flight Delay) is based on the
total delay for all the flights. This include delay in air due
to holding/speed control and their surface movement delay
due to rerouting to an alternate route. The co-evolutionary
process attempts to maximize the delay of the system by
evolving combinations of arrival traffic distribution and ground
events which ranked higher (generated higher delays) in the
co-evolutionary process.

Flight Delay (from Outer Marker to Gate) is defined as:
Average flight delay time from Outer Marker to Gate, and
is a measure of induced delay due to unavailability of air
and ground resources. It is estimated by taking the difference
between the ETA (Estimated time of arrival) of a flight from
its Outer Marker (OM) to the requested Gate and the ATA
(Actual Time of Arrival) of the flight to the assigned Gate
from its respective outer marker, averaged over 100 flights in
a given scenario.

Delay = [
1

N
Σ100

i=1(ATAi − ETAi)]
OM
G (4)

IV. EXPERIMENTAL DESIGN

As shown in Figure 1, we define the problem search space
(transition airspace) as a set of five concentric cylinders (to
equally divide transition airspace with 5 nm safety separation)
with runway (touchdown point) at the center. The height of
the transition airspace is set to 10,000 ft, and the radius to
25 nm. The outer most cylinder (denoted Ring 4) is of radius
25 nm (transition airspace radius (TAR)), and inner cylinders
(Rings 4, 3, 2, 1 and 0) have radii of 25, 20, 15, 10 and 5 nm
as calculated in Equation 5. The outermost cylinder’s height
is 10,000 ft, corresponding to the start altitude of CDA, and
the inner cylinders have heights of 8000, 6000, 4000 and 2000
feet. Thus the transition airspace is divided into 5 levels, with
each level divided into 2000 ft to give a typical jet aircraft
enough vertical height to manoeuver given low thrust setting.

RingRadius =
TAR× (Ring Number + 1)

5
(5)

Each cylinder has wedges which represent transition points
from one level to another. These wedge points are spaced
1.5 nm apart, for safe separation between approaching air-
craft [20]. The number of wedges for a given cylinder is
calculated as follows:

Number of Wedges =
2π ×Ring Radius

SeparationDistance
(6)

The angle between the wedges is calculated as follows:

WedgeAngle =
2π

Number of Wedges
(7)

A transition airspace radius of 25 nm and a separation
distance of 1.5 nm gives the number of wedge points as 104,
83, 62, 41, and 20 for rings 4, 3, 2, 1 and 0 respectively.

At 2000 ft before touchdown the aircraft follows the final
approach path on the Instrument Landing System (ILS) glide
scope (3◦) and lands on the designated runway using final

Fig. 7. Optimization Airspace showing activation points in each quadrants.
Activation points are 150 nm from the outer marker and the outer marker
points is 50 nm from the Initial Approach Fix.

approach speed and descent thrust. The landing-gear was fixed
at 3000 feet and Eurocontrol’s Aircraft Database (BADA) [21]
aircraft-specific flap configuration for approach and landing
and corresponding stall speeds were used. The transition from
one wedge point to other wedge point is based on individual
aircraft performance parameters, derived from BADA.

For any given entry point (Initial Approach Fix) in the outer-
most ring and exit point (Final Approach Fix) in the inner-
most ring, full enumeration of the search space is performed
to find all the possible dynamic CDA routes, then a search is
performed on the ground resources, using the ground resource
network, to check if the ground resources are available, else
rerouting is done. Figure 8 shows the process flow chart for a
flight from the point it enters the transition airspace and until
its final route (dynamic CDA and Ground) is computed.

Figure 7 illustrates the overall airspace, where the activation
points (104 in number) are 150 nm from the outer marker.
The outer marker points are 50 nm away from the initial
approach fix points. The flights get activated at their designated
activation point based on the traffic distribution parameters
µ and σGA . Once the flight reaches the outer marker the
optimization process (dynamic CDA route computation on
distance & fuel burn) starts.

Flight activation time for two successive flights is based on
inter-arrival time distribution where the aircraft are generated
using a Poisson process with value of T uniformly initialized
during the first generation in the interval of [45 90].

Two traffic-handling business rules are used when there is
no route available, in air or ground) for a flight (See Figure 8).

• Speed Control: The speed is reduced every time by 10kts



Fig. 8. Flowchart illustrating the dynamic CDA route selection and ground
route assignment process for a flight.

until it is within its minimum speed Vmin envelope.

Vmin = CVmin × Vstall (8)

where Vstall is the stall speed of the aircraft. If the
aircraft is in approach configuration we use VstallAP , if
in landing configuration we use VstallLD from BADA.

• Hold: The flight is put in hold pattern for 60 seconds with
the fuel burn being calculated.

The domestic area of Sydney Airport’s terminal area is

Fig. 9. Snap shot of ATOMS simulator runway client showing the flight
movement on Sydney Airport

used as an example. It has three runways: medium spaced
parallel runways in the north-south (16/34) direction (3,962m
and 2,438m) and an intersecting/cross runway in the east-west
(07/25) direction (2,530m). In total there are 6 runways, 10
taxiways and 23 gates.

• Runways: 34L, 16R, 25, 07, 16L, 34R
• Taxiways: U1, B, C, T, T2, B2, G, L, U, B4
• Gates: 40, 2, 32, 56, 6, 3, 1, 9, 58, 35, 31, 52, 4, 33, 8,

36, 7, 39, 38, 34, 10, 54, 5
In ATOMS, for the sake of simplicity only domestic termi-

nal operations are modeled. Each runway is treated separately
i.e. runway 16 and runway 34 are independent. Taxiway speeds
are derived from BADA database (ground movement data),
and landing ground roll distances are calculated aerodynami-
cally by taking into account aircraft type, weight, wing span
and runway type. Figure 9 shows a snapshot of the ATOMS
simulator runway client with an aircraft taxing out at a speed
of 15 knots on taxiway C, towards runway 34R.

V. EXPERIMENTAL RESULTS

Figure 10 shows a typical scenario run in ATOMS with
inter-arrival time (T) = 52 sec and µ = 40 with most of the
flights are coming from Quadrant II.

While the inter-arrival time, activation points, distribution
parameter were all initialized uniformly, at the end of the
co-evolutionary run, the best solutions in all populations of
flights achieved an inter-arrival time of 52±6 seconds, and
activation points of 50±6. These parameter values produce
higher delays for the given traffic scenario and the associated
events as compared to earlier generations. It can be seen from
the data that the flights which have an average inter-arrival
time of 53 seconds and which are spatially distributed in the
II quadrant (South-East) (see figure 7) of the research airspace
can cause significant delays in a Dynamic CDA scenario.



Fig. 10. A Snapshot of ATOMS simulating a given traffic scenario with
inter-arrival time (T) = 53 sec and µ = 40.
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Fig. 11. Number of aircraft affected by individual resources (summed over
100 generations for all seeds).

We then looked into how many aircraft were affected
by unavailability of ground resources. Figure 11 shows the
number of aircraft affected by each ground resource. The data
is summed over all the 100 generations for all seeds. It can
be seen that taxiway G, taxiway C and runway 16R affected
the majority of the flights while taxiway C appears to be a
bottleneck and affected the highest number of aircraft.

We then analyzed overall flight delay caused by each of the
ground resources. Figure 12 shows the overall delay summed
over all the 100 generations for all seeds. It displays a similar
trend to Figure 11. Here also taxiway G, taxiway C and
runway 16R contributed to the highest number of delays, with
taxiway C contributing the highest.

We then investigated the progress of each resource, that
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Fig. 12. Number of aircraft affected by individual resources (summed over
100 generations for all seeds).

significantly contributed to the overall delay, over generations.
Figure 12 shows the delay induced by taxiway C (top-left),
taxiway G (top-right) and runway 16R (bottom) summed
over all seeds for 100 generations. The figure shows that
cooperative co-evolution was able to evolve ground events for
resources which were able to maximizes the delays.

When looking at the events that evolved over 100 gener-
ations, Table I shows the set of events in the first and last
generation. It can be seen from the data that in the final
generation, event E5 (Resource available for medium aircraft
only), is a major contributor for ground resources.

VI. CONCLUSIONS & FUTURE WORK

This paper presented the application of computational red
teaming as an approach to identify patterns of failures (major
delays) for the interdependency of dynamic CDA, arrival
traffic distribution and ground events. Co-evolution was used
as the search engine to evolve the reciprocal interaction of
arrival patterns and ground events.

The work demonstrated the power of computational red
teaming in identifying and analyzing vulnerabilities of ad-
vanced ATM concepts and evaluating their performance us-
ing co-evolutionary algorithms. The approach concurrently
searches the solution spaces of arrival traffic distribution and
constrained ground resources. The study was conducted to
demonstrate the usefulness of evolving complex scenarios by
using incremental feedback by the system, rather than hand-
designing the scenarios.

We conducted a series of computational experiments with
different arrival traffic distributions (both spatial and tempo-
ral) and different ground resource constraints scenarios. The
parameters impacting the delay performance were co-evolved
with our synthetic models of a terminal airport area (runways,
taxiway and gates). Results indicate that for the Sydney TMA
using the future concept of dynamic CDA, flights which are
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Fig. 13. Delay induced by taxiway C (top), taxiway G (middle) and runway
16R (bottom) summed over all seeds.

TABLE I
EVENTS AT THE BEGINNING AND END OF CO-EVOLUTIONARY RUNS.

Events at the start of co-evolutionary run:

Resource Event Start T End T
B6 E2 1639 838

1 E3 820 1174

A3 E5 4835 1123

07 E4 9304 103

56 E5 8358 319

5 E1 435 1419

A2 E7 4113 139

B8 E3 7252 1902

T2 E3 3604 2177

52 E6 3860 47

Events at the end of co-evolutionary run:

T1 E3 6946 3118

B E2 7897 153

16R E5 2613 2206

B6 E3 6371 3184

07 E5 37 1602

32 E5 9425 1869

C E5 5249 2148

G E3 2977 2685

34 L E1 6019 1314

B4 E7 791 2433

from the lower end of second quadrant with inter-arrival time
of 53 seconds, where the Runway 16L, taxiway G and taxiway
C are effected by an event which leads to their closure for
medium aircraft, leads to higher delays.

Co-evolutionary algorithms were able to identify spatial and
temporal distributions of arrival traffic that lead to higher
delays in dynamic CDA for a large spectrum of ground
event scenarios. The data analysis identified vulnerabilities of
the Dynamic CDA algorithm with respect to certain traffic
distributions and ground events.
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