
Ninth USA/Europe Air Traffic Management Research and Development Seminar (ATM2011) 

Spatial, Temporal, and Grouping Behaviors in 
Controller Communication Activities 

Yanjun Wang*+, Minghua Hu*, Patrick Bellot+ 
+Telecom-ParisTech, France 

*Nanjing University of Aeronautics & Astronautics, China 
yanjun.wang.ext@eurocontrol.int ; minghuahu@263.net 

bellot@telecom-paristech.fr 

Frizo Vormer°, Vu Duong° * 
° Eurocontrol Experimental Center 

Bretigny-sur-Orge, France 
{frizo.vormer, vu.duong}@eurocontrol.int

 
 
 

Abstract— Recent reports on human dynamics have uncovered 
regular patterns of human communication and other interactive 
activities that exhibit characteristics of heavy-tailed, power-law 
distributions instead of ever-belief Poisson-like random 
distributions. Motivated by these findings, we adopt a similar 
data-driven approach to investigate controller’s communication 
activities. On three different datasets, we examined the inter-
communication events to characterize temporal behavior of 
controller communications. The results showed that controller 
communications also exhibit a heavy-tailed feature with power-
law exponent lying between 2~3. When using a network dynamics 
approach to characterize spatial behavior of controller 
communications, we found out that the degree of the node (or the 
number of neighbor flights in the communication process) can be 
used to quantify the grouping behavior in structure-based 
abstraction for mitigating cognitive complexity. We finally 
identified a general Poisson distribution that transforms to a 
power-law distribution when increasing the strength of link 
connectivity.  Also, the analysis of fluctuation scaling phenomena 
showed that the relationship between the average number of 
communications and its standard deviation could be well 
described with a Taylor’s series. These exciting results confirm 
the hypothesis that traditional metrics of controller workload 
could be replaced by quantifiable measures of controller 
availability against airspace or sector activities, which is crucial 
to complex systems modeling approach for ATM.  

Keywords- air traffic control, human dynamics, network 
dynamics, complex systems, communication activities, human 
factors 

I. INTRODUCTION 

Research on human factors in Air Traffic Management 
(ATM) has emphasized the impact of critical behavior of 
human beings who are involved on the system safety, such as 
air traffic controller, and pilot etc. As the system continue to 
evolve with more advanced technologies and methodologies 
employed, for example within the framework of NextGen in 
US, and the SESAR in Europe, the complexities of 
understanding of operator’s and manager’s behavior pose a 
challenge to the research community. Specifically, the 
performance of the controller, who acts as the decision-maker 
and executor of the system, is closely interconnected with the 
system safety and efficiency. The prediction of controller 

performance with respect to traffic activities is therefore of 
quantifiable importance.  

It is thought that workload, at a microscopic level, is one of 
the main factors affecting controller’s performance. Great 
efforts have been focusing on measuring and predicting 
controller workload. Earliest work was based on queuing 
theory and examination of controller routine work [1-3]. There 
used to be consensus among research and operational 
communities that the understanding of the factors that drive 
workload is essential to measure and to predict workload [4-5]. 
Examinations on the relationships between workload and task 
demands were extensively conducted. Metrics derived from 
traffic data, such as dynamic density to indicate traffic 
complexity, were proposed as an important input for measuring 
and predicting workload [6-7]. As stated in [8], the dynamics 
properties of workload incorporated with controller strategies 
management should be investigated in order to calculate 
workload correctly. Notably, methods based on cognitive 
science have significantly contributed to our understanding of 
the mechanisms that radar controllers use to mediate cognitive 
complexity so that simplifying mental workload [9]. Structure-
base abstraction summarized the underlying common strategies 
among controllers. The quantified descriptions of mechanisms, 
which explain how controller manages system resources are, 
however, still poorly understood.  

Workload is only one factor affecting human activities. 
From a complex systems perspective, it is the human actions 
that influence the system operations. Controller is inextricable 
linked with the system, and the behavior might be depended on 
the unique sector structure, the dynamical changed traffic, and 
the individual knowledge and experience. Compared with 
workload, less is known, at the macroscopic level, on the 
property of the controller activities. 

Since 2005, proposals on human dynamics have suggested 
that several kinds of universal mechanisms, including priority 
based queuing processes when human execute tasks, cascading 
non-homogeneous Poisson process with circadian cycle, the 
combination of Poisson processes and decision-based queuing 
processes, may govern human daily activities [10-12]. Heavy-
tailed distributions of inter-event times have been widely 
reporting from various kind of human activities, range from 
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correspondence [13], email communication [14], through 
printing behavior [15], online films rating [16], to human 
mobility [17]. Instead of randomly occurring, as assumed 
previously, the temporal patterns of human actions exhibit the 
bursts of frequent actions separated by long periods of 
inactivity.  Analysis from mobile phone data sets demonstrates 
that the human trajectories show a high degree of temporal and 
spatial regularity [17]. Although the studies in human dynamics 
have been successful in describing human activities, it should 
be noted that all the examined data are deliberate human 
activities. Although there is the lack of the evidence from a 
task-specific activity, as while simple mechanisms may be 
incapable of capturing the distinct nature of air traffic 
controller’s activity, for example, the dependence on 
environmental conditions, and urgency or time pressure, the 
emerging human dynamics studies provide insight into air 
traffic controller activity. 

Here we address the important problem of describing 
controller activities from both methods and empirical results. 
We analyze air traffic controller communication activities data 
from a complex system point of view, to provide an initial 
demonstration of the physical understanding of the rules by 
which air traffic controller control the traffic. Specifically, we 
(i) investigate temporal behaviors of controller’s 
communication activities; (ii) demonstrate the use of network 
dynamics to study spatial behaviors in controller 
communications; (iii) explore the fluctuation scaling of 
communication activities while taking controller as a 
component of ATM complex system. 

The rest of the paper is organized as following: Section II 
presents the methods we use by firstly explaining the use of 
voice communication activities followed by the dynamic 
network approach and how to capture fluctuation scaling 
phenomena. In Section III, we describe three sets of 
communication data on which we have investigated. Section IV 
shows the empirical results of the temporal/spatial behaviors, 
and the ensemble fluctuation scaling in the controller 
communication activities. The paper ends with conclusion 
remarks in Section V. 

II. METHOD 

A. Analysing ATCO Voice Communication Activities  

In ATM system, prior to the emerging of digital data 
communication between controllers and pilots, radio voice 
communication had been the primary means used by 
controllers to control air traffic. However, it is still the only 
channel for information flow between pilots and controllers in 
most control centers. The use of communication events to 
measure workload has been extensively investigated [19-21].  

In psychology, human activity is defined as a coherent 
system of internal processes and external behavior and 
motivation that are combined directed to achieve conscious 
goals [18]. Thus, we assume that controller voice 
communication activity encapsulates both cognitive efforts and 
physical efforts to accomplish the mission of ensuring traffic 
safety and efficiency.  

The point of this paper is, however to investigate the 
instinct nature of human with the voice communication as a 
proxy. We believe that human activity will be quickly adapted 
to the contextual environment while human brain, which drives 
the external activity, evolves slowly.  

Communication activity in this paper is defined as the event 
that controller press the push-to-talk button and hold in order to 
send the transmissions to aircraft, disregarding the contents of 
the transmissions. Particularly, empty transmission is also seen 
as a complete communication activity. Figure 1 gives an 
example of the communication activities between a controller 
and pilots. The start time sit  and the end time eit  of each 

activity i  have been recorded. The length of activity iL , 
which is the time taken to accomplish the activity, is therefore 
calculated as e s

i i iL t t= − .  Two measures widely investigated 
in human dynamics research are inter-events times τ  and the 
response times wτ  (or the waiting times).  Inter-events time is 
time interval between two consecutive activities, while the 
response time is the time difference between the reaction time 
on an event and the arrival time of the event.  

 

It is should be pointed out that there are significant 
differences between controller communication activity and the 
deliberate activities examined in the above-mentioned studies.  

The first and the most notable one is that the length of 
controller communication activities is sometimes even larger 
than the inter-communication times, which is not the case in 
other activities. For example, the time taken to write an email 
and the inter-arrival times of emails are commonly not in the 
same magnitude. Therefore, the length of communication 
might not be disregarded as the other human studies. A 
common consensus in ATM is that controller will change 
communication strategies according to different traffic 
situation. They will shorten each instruction by cut off 
unimportant information during communication when the 
traffic increases. The communication with the same length can 
contain different information. Also, it is difficult to identify all 
the flight information across the communication data. We 
therefore, in this article will focus on the inter-communication 
times 1

1
s s
i it tτ += −  rather than on the response times to the 

flights. However, it should uncover us more interesting 
phenomena if we had the flight information of communication.  

The second is the fact that controller communications are 
highly depended on traffic and route structure. There will be no 
communication if there is no traffic. Hence, the inter-events 
times that is higher than certain threshold will be disregarded. 

 

Figure 1. Visualized communication trunks between a controller and pilots. 



To explore how traffic influences communication activities, we 
examine the fluctuation scaling phenomena and the method 
will be described in Section IV.C.  

The last is the frequently interaction between controller and 
pilots. Previous studies on ATC communication classify 
controller communication activities into several types based on 
the contents of transmissions [22]. Most of controller 
communications are the interaction with pilots. Normally, 
controller should give a prompt response to pilot when pilot 
talk to controller. Communication activities can be classified 
into two groups: initiative and passive, and each group’s 
communications are the outcome of different mechanisms [12]. 

B. Network Dynamics to Trace Trajectory of Human Actions  

Inspired by the cognitive investigation in [9], grouping is 
one structure-based abstraction to mitigate cognitive 
complexity. Our objective here is to quantify the group 
behavior and to capture the spatial behavior of controller i.e., 
how traffic dynamics evolves in controller’s mind.  

To trace the trajectory that controller selects or has to 
select a flight communication, we construct a network from 
the temporal data of the flight information decoded from 
communication events over time. The assumption is that the 
physical relationships between flights in the sector are not the 
same as in controller’s mind. If several flights occur 
simultaneously during a short period in controller 
communication sequence for a couple of times, then we 
believe that there are strong relationships among these flights 
and they were consciously or unconsciously regrouped by 
controller.  

In order to examine this phenomenon, we propose a novel 
method for the transform of the temporal activities data into an 
undirected weighted network. The nodes in the network are 
the flights traverse the sector, while the link between nodes 
indicates that there is a temporal relationship between the two 
flights. First we can obtain the adjacency matrix of the 
network from the communication data by calculating 

As such, the network contains much information about the 
calling trajectory. The temporal information, which is the most 
important one, is however not included.  Our intention is to 
investigate the relationships between flights rather than 
building temporal graphs.  

It is obvious that the two flights have no relationship if 
their communication were separated by a long period of time 
units. In contrary, they should have some kind of relation.  
Therefore, to determine whether two nodes are connected or 
disconnect, we firstly calculate the temporal 
distancesijd between flights.  ijd is the time intervals between 

the communication activities which are related to flight i  and 
j (Figure 2 shows an example). A predefined time 

window mind  is used to determine the connectivity between the 

nodes.  If ijd is smaller than mind , then we say these two flights 

are related and a link will be added between the corresponding 
nodes; otherwise the nodes are not connected directly. The 
adjacency matrix L  of the network can be obtained as 

min1,  

0, otherwise

ij

ij

d d
l

≤
= 


 

Especially, we define 0iiL = . If mind  is equal or greater than the 

length of the exercise then we will have a complete network. 

Along with the adjacency matrixL , we define a weighted 

matrix W, in which the integer numberijw  is used to record the 

number of link
ijl occurs across the whole data. 

Figure 2 illustrates the network generated for the sector 
OYOT in one exercise. 
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Figure 2. Network representation of the communication activities. (a), the list 
of flights called by the controller. The flights are arranged according to the 
order in the communication data. (b), The associate network of the 
communication events in (a). Each dot corresponds to a flight, and the size of 
the nodes corresponds to the frequency of communication with controller. The 
widths of line edges are proportional to the frequency of the communication 
for the two flights during the time window. 
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As shown in the calling list (Figure 2(a)), the link between 
AF113ZL and BZ682ZR can be different according tomind .  
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C. Measuring Fluctuation Scaling of Communication 
Activities 

Normally a flight receives at least two messages (hand in 
and hand off) from the controller when it traverses the sector. 
The more flights enter the sector, the more communication 
activities there should be. It is difficult to quantify the 
correlations between traffic and communication as controller 
communication activity emerges from the interaction with 
traffic, airspace, and the human brain.  

Instead of looking at how communication grows with 
respect to traffic increases, we are interested in the fluctuation 
of communications considering controller as a complex 
system.  

To describe complex systems in characterizing the 
relationship between fluctuations in the activity of a 
component and the average activity of the system, Taylor’s 
series (or Taylor’s scaling) has been observed in many natural 
and human-driven systems, ranging from ecology system 
through stock market to human dynamics [24, 25]. Taylor’s 
power law is named after L. R. Taylor in recognition of his 
paper in 1961 [23]. The relationship is usually in the following 
from: 

Fluctuation ≅ constant x average∝, here [1/ 2,1]α ∈  

Based on the data over which the averages are taken, the 
Taylor’s power law can be grouped into two categories: 
Temporal Fluctuation Scaling (TFS) and Ensemble 
Fluctuation Scaling (EFS) [24]. Models for the explanation of 
the origins of Taylor’s power laws can be found in [25].   

For a sector, we calculate the average of communication 

f and the standard deviation δ according to fixed number of 
the flights entering the sector. The calculation can be done for 
sectors of different entering flights. Detailed procedure for 
capture fluctuation scaling in controller communication can be 
found in[26]. 

III.  EXPERIMENTAL DATA 

Experimental data used in this paper includes ATCOSIM 
Corpus Data, Paris TMA simulation data, and some 
operational Data obtained from FAA. 

A. Paris TMA Simulation Data 

Paris TMA data was recorded during a two weeks real-
time simulation at EUROCONTROL Experimental Centre in 
June 2010. The purpose of this simulation was to test the 
viability of improvements proposed by French DSNA to the 
ATM system serving Paris-Charles De Gaulle, Paris-Orly and 
Paris-Le Bourget airports. 

The simulation involved around 100 participants over 2 
weeks: 45 controller positions and 35 pilot positions. Thirty 
sectors were simulated, which includes 11 sectors of the Athis-
Mons Control Centre, 13 approach positions, 2 military 
positions and 4 feeds. The traffic flows between sectors of one 
exercise are given in Figure. 3.  

Traffic samples for simulation were based on the real 
traffic rate on 29 May, and 12 June, 2009. For each main 
configuration (facing west and facing east), two samples with 
heavy traffic were prepared.  

There were twenty exercises in total, with an average of 
one hour and thirty minutes long for each exercise. Among 
them, fourteen exercises are identified as good exercises that 
were analyzed in this study. Form the recorded data we pick 
up three data sets that are necessary for our investigation. For 
each exercise, data include: 

1) Radio communication data. This one contains the start 
time and end time of the communication made by 
controller or pilots. Information on the content of 
communication is unavailable. There are an average of 
300 communication made by controller for each sector in 
each exercise. 

2) Pilots manipulating data. Pilot data was retrieved from 
the flight simulator. The simulator recorded every 
manipulation related to changes of flight motion. Hence, 
we could find in this dataset all call-signs and the time of 
pilot’s entering instructions to change flight’s motion 
(could be 1~2 seconds differences with the actual entering 
time due to system delay), as well as the types of 
instructions. We use these data under the assumption that 

 
Figure 3. Traffic flow between sectors in Paris TMA simulation. Each node 
corresponds to a sector. The circle nodes are the sectors recorded for analyzed, 
while the squire ones are either feeding sectors or the sectors that are not listed 
in the data. The widths of lines are proportional to the traffic amount between 
linked sectors, with green arrows standing for outgoing flows and the red ones 
representing for incoming flows. 



the clearances were granted by controller few seconds 
before. 

3) Transfer Information. Each piece of record contains 
flight call-sign, transfer time, the sector it is leaving and 
the sector it will be transferred to. Throughput of the 
sector varies from 30 to 100 aircraft during the measured 
period (see Figure 2). 

B. ATCOSIM Data 

The second dataset is the ATCOSIM Air Traffic Control 
Simulation Speech corpus of EUROCONTROL Experimental 
Centre. The aim of the ATCOSIM is to provide a speech 
database of non-prompted and clean ATC operator speech. It 
consists of ten hours of communication data, which were 
recorded during ATC real-time simulations that were 
conducted between 20/01/1997 and 14/02/1997 [27]. Only 
controllers’ voice was recorded and analyzed. Each record 
consists of circa one hour of communication data. Both speech 
signal data and transcription of the utterance, together with the 
complete annotation and meta-data for all utterances, can be 
found in the database. The recorded simulation data does not 
include information on traffic and airspace corresponding to 
the communication data. 

The general information of the whole fifty exercises is 
shown in Table 1. The detailed information on each exercise is 
not given here. 

Table 1. Information on the 50 exercises in the ATCOSIM database 

 TOTAL AVERAGE 

Length of the exercise ( hh:mm:ss ) 59:18:37 1:11:10 

Number of the flights (complete flights*) 
identified in the exercise 

3121 
(1966) 

62.42 (40) 

Number of the communication events 
(Unidentified) in the exercise 

10078 
(1276) 

201.56 (26) 

*Complete flight is the flight that receives both hand-in message and handout message. 

C. FAA Operational Data 

To investigate the other factors effects on the controller 
communication, such as culture, we obtained data from the 
Federal Aviation Administration. The data were based on the 
operational data recorded in the Kansas City in 1999. It 
consists of 8 samples, including four sectors, namely Sector 
14, Sector 30, Sector 52, and Sector 54. In total, there are 999 
communication events. On average, each traffic sample has 
125 communication events. Around 47% of communication 
was made by the radar controller, 53% was made by the pilots 
and the other controllers (see [19] for details). 

It was found that each traffic sample is around 15 minutes 
long with around 10 flights in the sectors. The number of the 
identified flights in each sample is 15~20, while the flights 
with both hand in and hand out message is even fewer. Such 
short period with few flights could not capture the dynamic 
property of individual controller activity. However, it could be 
used to test the collective phenomena from human dynamics 
point of few. Therefore, we complement the temporal part 
with this data.    

IV. EMPIRICAL RESULTS AND DISCUSSION 

A. Temporal Characteristics 

1)  Results 
 

With the no-traffic-no-communication assumption, we first 
make a careful examination on the rates of arrival/departure 
traffic of each sector. Although there were four types of traffic 
configuration during the simulations, from the empirical 
cumulative distributions of inter-arrival and inter-departure 
times we observe that traffic distributions vary slightly in the 
same sector across all the exercises. However, traffic in 
different types of sectors (e.g., ACC, APP, and Military 
sectors) evolves more heterogeneously.  

The empirical distribution of the length of communication 
made by both controller and pilots are also calculated, 
showing that most communication events last 3~4 seconds, 
with few events lasting over 6 seconds. Both traffic 
distribution and length of communication give an overview of 
the simulation.  

Building upon prior research, we investigated the 
distribution of inter-communication times in each sectors. 
Results showed that, typically, if the data has a power law 
distribution ( )p ατ τ −= , then the behavior of complementary 
cumulative distributions functions (CCDF) in the log-log plot 
will be a straight line with the slope of α− [28]. In practice, 
few empirical data obey power laws. For most cases, data with 
value greater than a minimum threshold can exhibit a form of 
power law.  

Here we use the method described in [29] to test and 
estimate the parameters of power-lawα and

mint . Both the 

probability distribution (PD) and the CCDF of inter-
communication times for an exercise over a sector can be 
plotted on log-log scale. Figure 4 shows the inter-
communication times in an exercise of sector AOUS. It can be 
seen from the probability plot in inset of Figure 4(a) that 
communication activities exhibit the heavy tailed distribution 
over 10 seconds. 

 Almost all exercises have the same distribution shapes with 
different scales. It suggests that communication data for the 
same sector are homogenous, allowing us to group the inter-
communication times of each sector across all exercises.  

The CCDF of the grouped data is plotted in the main plan 
of Figure 4(a). The solid line in the main figure clearly 
indicates the power-law fitting of the data. We have examined 
all involved sectors, and we found that the exponents of power-
law fitting [2 .5, 2.9]α ∈ , with the cut off at 

min 12( 5)τ = ± .  

 

 



Four approach sectors (DENPG, DESPG, INNPG, and 
ITBPG), and one ACC sector (THLN) have the exponents 
higher than 3. Figure 4(b) shows the inter-communication 
times of FAA data, which also indicates a power-law decays. 

2) Discussion 
 

A recent report of human dynamics [12] has shown both 
empirical evidences and simulation results for the bimodal 
distribution rather than the single form of power-law 
distribution in human communications. A significant 
difference from the Barabasi’s model [10] is that, aside from 
the priority-based queuing for decision-making, the random 
Poisson processes as well as the interaction among individuals 
contribute to the heavy-tailed feature of human dynamics. 

 Controller communication shows a heavy tailed behavior, 
and it is not the bimodal distribution uncovered in short 
message-sending activities [12], therefore the cut-off and 
heavy-tail here should be interpreted with caution. The major 
factors are the inter-dependence of communication and the 
dependence on the pilots’ communication. We hypothesize 
that the priority-based queuing process (that will be well 
explain the priority of strategies management process, together 
with the Markov process which take the effect of dependence 
of communication and interaction into account) could explain 
the complex communication phenomena. 

B. Spatial Characteristics 

1) Results 
 

Along with the patterns of temporal behavior, we 
measured the spatial behavior of controller by reconstructing 
the communication trajectories. The network of temporal 
events of communication can capture the relationships of 
flights in controller’s mind.  

Topological changes were measured with characteristics 
that focus on the nodes’ connectivity and degree distribution 
and that have been used in prior research on network 
dynamics. The connectivity may has less meaning than degree 

distribution, as degree distribution shows the number of 
neighbor flights which were grouped by controller. 

We have tested the effects of different mind and minw  on the 
network properties. The degree (

id ) of the flighti  is the 

number of the neighbors in the network, which indicates how 
many flights that flighti has been involved with. Hence, we 
have 

i ij
j

d L=∑  

Note that a pair of flights can been linked because they 
occurred in the predetermined time window only once. 
However, there could be the result of random selection. 
Communicating with the second flight may have nothing to do 
with controller strategy. In contrast, if this pair of flights 
occurred several times during communication, this clearly 
suggests that either because of physical relationship between 
flights, or because of the group abstraction to mitigate 
cognitive complexity, controller communicate with the two 
flights alternately. Following this logic, we measure the 
number of neighbors of each flight under different weight of 
link by calculation as:  

min, i j

i ij
j w w

d w
≥

= ∑  

To our surprise, the degree distributions have quite similar 
shapes across all the sectors. With mind fixed and min 3w ≤ , 
instead of a random distribution, most of data can be described 
as a Poisson distribution or Normal distribution (see Figure 5). 
Such trends appear commonly in the random network studied 
by Erdos and Renyi [30] and each edge is present or absent 
with equal probability.  

This suggests that the pairs of flights are uniformly 
selected. With minw increases, the distribution moves towards 
left which means there are fewer flights have large degree 
while most flights have few neighbor flights, and the average 
of degree for all flights decreases. A different type of 
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Figure 4. Distributions of inter-communication times. (a), The main figure is the complementary cumulative distributions functions (CCDF) of inter-
communication times in sector AOUS across all the exercises. The blue dots correspond to empirical data, while the solid line is the power-law fitting. The inset 
figure shows the probability of inter times of each exercise of the sector, with different colors of marker stands for different exercises. (b), The CCDF plot of FAA 
data. 



distribution possibly emerges whenminw  exceed 4. Most 
flights have a small degree, while few flights still have more 
neighbors.  

Due to limited size of the network, we cannot give a 
positive fitting the data with power-law distribution although 
the data exhibits such trends. The change on degree 
distribution suggests a transformation of the network. 
Reasonable explanation could be the “preferential attachment” 
proposed by Barabasi for the explanation of power-law 

distribution of degree in complex network [10]. We can see 
that controller keeps few “important flights” in their call list, 
and the other flights are attached to these flights with higher 
probability. 

In addition, we can see that the maximum probability of 
the degree is correlated to the number of adjacent sectors (see 
Figure 6). Interpretably, the more adjacent sectors a sector has, 
the climax of the degree will be. For instance, sector AOUS, 
THLN and TML.   
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Figure 5. Degree distributions of spatial networks in ACC sectors (the first two rows) and in APP sectors (the last two rows), both with the min distance 
between flight is 60 seconds. The horizontal-axis is the degree, while the vertical-axis is the percentage of nodes (flights).  



 

  

2) Discussion 
 

The currently results were based on the pilot manipulating 
data related to flight motion change which were recorded by 
the flight simulator. Although there may be few seconds of 
delay between the controller sending the clearance to change 
flight heading, speed, or altitude, these data reflects the willing 
or the intention of controller about how he/she wants traffic to 
evolve. The fact is that controller dynamically changes the 
strategies according to the traffic. Spatial behavior captures 
the patterns of selecting flights to some extent. The link of the 
temporal behavior and spatial behavior may lead to a better 
understanding of controller’s activities. Therefore it will likely 
shed light on other human factors related problems. 

C. Fluctuation Scaling 

1) Results 
 

We regroup the data of each sector to examine the relations 
between the amount of traffic and that of communication.  

Results show that both the average and the standard 
deviation of the communication activities grow quickly as the 
number of flights increases. Because of the limited number of 
exercises (14 exercises) for each sector, we observed stronger 
fluctuations at the beginning of the tests. 

When we plotted the standard deviation according to the 
average of the communication activities, as shown in Figure 7 
(a), we observe linear fit of the empirical data in the log-log 
plot (solid red line). Hence, the standard deviation of the 
activities and the average activities do exhibit a clear Taylor’s 
power-law relationship with 0.56536α = .  

After adding the ATCOSIM data, the slope changed 
slightly, while the whole dataset still can be described with a 
power-law form with 0.59649α =  

2) Discussion 
 

The detection of fluctuation scaling was particularly 
noteworthy. On one hand, it captures the interesting adaptive 
phenomena of controller activity with respect to incoming 
traffic. Together with the temporal characteristics of 
communication, it may provide a way to understand the 
general properties of the controller’s activities across different 
incoming traffic.  

On the other hand, it may reveal the inherent nature of the 
system with the controller as an important element in the 
system. With the system continues to evolve; such complex 
phenomena are critical to our understanding of the dynamical 
aspects of the evolution.  
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Figure 6. Number of adjacent sectors. For each simulation exercise, the 
number of adjacent sectors of a sector can be obtained by examining the 
traffic transfer information. Because of different simulation 
configurations, there are slightly differences across all exercises with the 
standard deviation around 1.  
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Figure 7. Fluctuation scaling for communication activities. (a) results from Paris TMA data, and in (b) we add the ATCOSIM data (the red dots in the inset 
figure) to compare the fitting forms. The fitted exponents are shown with error ±0.04 due to logarithmically binning data. Points were logarithmically binned 
and log sigma was averaged for better visibility, the error bars represent the standard deviations inside the bins. The inset shows the same axis range, but 
without binning. 



V. CONCLUSIONS 

Investigations on historical data have been uncovering the 
striking statistical properties of human activities, leading us to a 
quantitative understanding of the rules governing human 
actions. The present work shows that controller inter-
communication does exhibit the heavy-tailed feature similar to 
other daily human interactive activities.  

However, such results should be interpreted with caution 
because the decaying functions may vary according to traffic 
and sectors.  

In addition, we have demonstrated that network dynamics-
based approach can capture the underlying patterns of 
controller communication activity. The proposed approach has 
complementary role in the study of controller workload and 
cognitive complexity.  

The fluctuation scaling of communication suggests that 
controller, as a complex system, his/her activities can be well 
characterized by a complex system approach.  

Our results must be considered in light of several 
limitations of the present study. First, our empirical data were 
mainly based on Paris TMA simulation data containing around 
twenty-one hours’ busy traffic and communication activity data 
for each sector. Although the results show quite similar general 
patterns among different exercise data, it still needs to be tested 
with other different data.  

Also the homogeneous and heterogeneous properties should 
be examined. The spatial network is able to reconstruct the 
activity trajectory, so that it is easier to analyze the data by the 
use of network dynamics approaches. We note that the group-
based abstraction is a dynamic strategy rather than static one. 
More systematic exploration of the influence of traffic and 
airspace factors on controller activities is needed. 

We anticipate that with the knowledge of previous work on 
workload and cognitive complexity, the use of data-driven 
approach will further advance the understanding of the 
dynamics of the ATM system as a human-driven system. 
Future work should focus on using existing models, such as 
random walk, priority-based queuing, and preferential 
attachment for modeling the human controller system.  
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