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Abstract— Recent reports on human dynamics have uncovered

regular patterns of human communication and other nteractive

activities that exhibit characteristics of heavy-tded, power-law

distributions instead of ever-belief Poisson-like andom

distributions. Motivated by these findings, we adop a similar

data-driven approach to investigate controller's cexmunication

activities. On three different datasets, we examirk the inter-

communication events to characterizetemporal behavior of

controller communications. The results showed thatontroller

communications also exhibit a heavy-tailed featuravith power-

law exponent lying between 2~3. When using a netwlodynamics

approach to characterize spatial behavior of controller

communications, we found out that the degree of theode (or the
number of neighbor flights in the communication praess) can be
used to quantify the grouping behavior in structure-based
abstraction for mitigating cognitive complexity. We finally

identified a general Poisson distribution that trarsforms to a
power-law distribution when increasing the strength of link

connectivity. Also, the analysis of fluctuation sing phenomena
showed that the relationship between the average mber of

communications and its standard deviation could bewell

described with a Taylor's series. These exciting selts confirm

the hypothesis that traditional metrics of controler workload

could be replaced by quantifiable measures of contiler

availability against airspace or sector activitieswhich is crucial

to complex systems modeling approach for ATM.

Keywords- air traffic control, human dynamics, network

dynamics, complex systems, communication activities, human
factors
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performance with respect to traffic activities rsetefore of
gquantifiable importance.

It is thought that workload, at a microscopic levglone of
the main factors affecting controller's performandereat
efforts have been focusing on measuring and piedict
controller workload. Earliest work was based on ujjpg
theory and examination of controller routine woik3]. There
used to be consensus among research and operational
communities that the understanding of the factbeg drive
workload is essential to measure and to predicklead [4-5].
Examinations on the relationships between worklaad task
demands were extensively conducted. Metrics derivech
traffic data, such as dynamic density to indicateffit
complexity, were proposed as an important inpunfeasuring
and predicting workload [6-7]. As stated in [8]etdynamics
properties of workload incorporated with controlirategies
management should be investigated in order to ledtu
workload correctly. Notably, methods based on dbgni
science have significantly contributed to our ustiding of
the mechanisms that radar controllers use to nediagnitive
complexity so that simplifying mental workload [Btructure-
base abstraction summarized the underlying comrrategies
among controllers. The quantified descriptions efchanisms,
which explain how controller manages system ressugre,
however, still poorly understood.

Workload is only one factor affecting human acist
From a complex systems perspective, it is the huatiions
that influence the system operations. Controllanéxtricable
linked with the system, and the behavior might bpathded on
the unique sector structure, the dynamical chamgsdfic, and

Research on human factors in Air Traffic Managementhe individual knowledge and experience. Compardth w

(ATM) has emphasized the impact of critical behavid
human beings who are involved on the system sasegh as
air traffic controller, and pilot etc. As the systeontinue to
evolve with more advanced technologies and metlogies
employed, for example within the framework of NegtGin
US, and the SESAR in Europe, the complexities
understanding of operator's and manager’s behgwime a
challenge to the research community. Specificaltiie
performance of the controller, who acts as thesi@timaker
and executor of the system, is closely intercoretketith the
system safety and efficiency. The prediction of toaker

This work is performed under project HERBERAamed after Prc
Simon A. Herbert, a founder of Complex Systems Niade This project i
funded by EUROCONTROL, aiming at exploring compssistems approa
to the modeling of ATM holistic syste

workload, less is known, at the macroscopic lewel, the
property of the controller activities.

Since 2005, proposals on human dynamics have siagges

that several kinds of universal mechanisms, inclgdiriority

ased queuing processes when human execute taskading
non-homogeneous Poisson process with circadiare,cyok
combination of Poisson processes and decision-bgseding
processes, may govern human daily activities [J0-H2avy-
tailed distributions of inter-event times have beeidely
reporting from various kind of human activitiesnge from



correspondence [13], email communication [14], tiglo
printing behavior [15], online films rating [16]o thuman
mobility [17]. Instead of randomly occurring, assasmed
previously, the temporal patterns of human actiextsbit the
bursts of frequent actions separated by long periof
inactivity. Analysis from mobile phone data setsnbnstrates
that the human trajectories show a high degreempbral and
spatial regularity [17]. Although the studies imtan dynamics
have been successful in describing human actiyitieshould
be noted that all the examined data are delibenat@an
activities. Although there is the lack of the evide from a
task-specific activity, as while simple mechanismay be
incapable of capturing the distinct nature of aiaffic

controller's activity, for example, the dependenamn

environmental conditions, and urgency or time pressthe
emerging human dynamics studies provide insight iair

traffic controller activity.

The point of this paper is, however to investigéte
instinct nature of human with the voice communimatas a
proxy. We believe that human activity will be quicladapted
to the contextual environment while human brainicivtdrives
the external activity, evolves slowly.

Communication activity in this paper is definedtzes event
that controller press the push-to-talk button aold im order to
send the transmissions to aircraft, disregardimgctintents of
the transmissions. Particularly, empty transmisgiosso seen
as a complete communication activity. Figure 1 given
example of the communication activities betweeroatroller
and pilots. The start tim¢® and the end time® of each

activity i have been recorded. The length of activty,

which is the time taken to accomplish the activisytherefore
calculated ag, =t7 -t°. Two measures widely investigated

in human dynamics research anger-events times 7 and the

Here we address the important problem of describingesponse times 7, (or the waiting times). Inter-events time is

controller activities from both methods and empiricesults.
We analyze air traffic controller communicationieities data
from a complex system point of view, to provide iaitial
demonstration of the physical understanding of riles by
which air traffic controller control the traffic.p8cifically, we
(i) investigate temporal behaviors of controller’s
communication activities; (iij) demonstrate the a$enetwork
dynamics to study spatial behaviors in  controller
communications; (iii) explore thefluctuation scaling of
communication activities while taking controller aa
component of ATM complex system.

The rest of the paper is organized as followingctiBe Il
presents the methods we use by firstly explainhmy use of
voice communication activities followed by the dgmia
network approach and how to capture fluctuationlirsga
phenomena. In Section I,
communication data on which we have investigatedti&n IV
shows the empirical results of the temporal/spdtetiaviors,
and the ensemble fluctuation scaling in the colerol
communication activities. The paper ends with casion
remarks in Section V.

1. METHOD

A. Analysing ATCO Voice Communication Activities

In ATM system, prior to the emerging of digital dat
communication between controllers and pilots, radace

we describe three séts o

time interval between two consecutive activitiedhilev the
response time is the time difference between thetimn time
on an event and the arrival time of the event.

I A TCO Communication
I Filot Communication
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Figure 1. Visualized communication trunks between a contraited pilots.

It is should be pointed out that there are sigaific
differences between controller communication afstigind the
deliberate activities examined in the above-memiibstudies.

The first and the most notable one is that the theraf
controller communication activities is sometimesrmre\arger
than the inter-communication times, which is na ttase in
other activities. For example, the time taken titevan email
and the inter-arrival times of emails are commamty in the
same magnitude. Therefore, the length of communitat
might not be disregarded as the other human studies
common consensus in ATM is that controller will sba
communication strategies according to different ffira

communication had been the primary means used by ation. They will shorten each instruction byt coff

controllers to control air traffic. However, it &ill the only
channel for information flow between pilots and olters in
most control centers. The use of communication Evén
measure workload has been extensively investigaga1].

In psychology, human activity is defined as a ceher
system of internal processes and external behasiuat
motivation that are combined directed to achievascmus
goals [18]. Thus, we assume that controller
communication activity encapsulates both cogniéfferts and
physical efforts to accomplish the mission of emsutraffic
safety and efficiency.

unimportant information during communication whehe t
traffic increases. The communication with the sdemgth can
contain different information. Also, it is difficuto identify all
the flight information across the communication adate
therefore, in this article will focus on the insmmunication
times 7* =t, -t° rather than on the response times to the

flights. However, it should uncover us more intéres

voicgphenomena if we had the flight information of conmication.

The second is the fact that controller communicatiare
highly depended on traffic and route structure.réhill be no
communication if there is no traffic. Hence, theéemevents
times that is higher than certain threshold willdisregarded.



To explore how traffic influences communicationidtes, we
examine the fluctuation scaling phenomena and teéhaoa
will be described in Section IV.C.

The last is the frequently interaction between aler and
pilots. Previous studies on ATC communication dfgss
controller communication activities into severgheg based on
the contents of transmissions [22]. Most of coterol
communications are the interaction with pilots. Helly,
controller should give a prompt response to pilbtew pilot
talk to controller. Communication activities can tassified
into two groups: initiative and passive, and eacbug's
communications are the outcome of different medrasi[12].

B. Network Dynamicsto Trace Trajectory of Human Actions
Inspired by the cognitive investigation in [9], gpng is
one structure-based abstraction to mitigate cogmniti
complexity. Our objective here is to quantify thyeoup
behavior and to capture thgpatial behavior of controller i.e.,

how traffic dynamics evolves in controller’'s mind.

To trace the trajectory that controller selectshas to
select a flight communication, we construct a neknoom
the temporal data of the flight information decodiedm
communication events over time. The assumptiorhds the
physical relationships between flights in the seat@ not the
same as in controller's mind. If several flightscoc
simultaneously during a short period in controller
communication sequence for a couple of times, then
believe that there are strong relationships ambege flights
and they were consciously or unconsciously regrdupg
controller.

In order to examine this phenomenon, we proposevaln
method for the transform of the temporal activitiesa into an
undirected weighted network. The nodes in the netveoe
the flights traverse the sector, while the linkvietn nodes
indicates that there is a temporal relationshipvben the two
flights. First we can obtain the adjacency matrii the
network from the communication data by calculating

1, if flight i and flightj consecutivelseceive the message frc
the controller
0, else

ij

As such, the network contains much information atbe
calling trajectory. The temporal information, whishthe most
important one, is however not included. Our intamtis to
investigate the relationships between flights nathilean
building temporal graphs.

It is obvious that the two flights have no relasbip if
their communication were separated by a long peofotime
units. In contrary, they should have some kind eftion.
Therefore, to determine whether two nodes are adedeor
disconnect, we  firstly  calculate the  temporal
distancesl, between flights. d, is the time intervals between

the communication activities which are relatedlight i and
j (Figure 2 shows an example).

windowd,

in

is used to determine the connectivity between thé’

nodes. It} is smaller thad,;, , then we say these two flights

are related and a link will be added between thieesponding
nodes; otherwise the nodes are not connected lgliréidte
adjacency matrix. of the network can be obtained as

{1, d; <d,

"0, otherwise

Especially, we defing, = 0. Ifd, is equal or greater than the

length of the exercise then we will have a comphetevork.
Along with the adjacency matrix, we define a weighted

matrix W, in which the integer numb¥y is used to record the

number of IinI{ij occurs across the whole data.

Figure 2 illustrates the network generated for seetor
OYOT in one exercise.
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Figure 2. Network representation of the communication atitigi (a), the list
of flights called by the controller. The flightseaarranged according to the
order in the communication data. (b), The associaéwork of the
communication events in (a). Each dot correspondsftight, and the size of

A predefined timene nodes corresponds to the frequency of commiiiicaith controller. The

idths of line edges are proportional to the frewyeof the communication
or the two flights during the time window.



As shown in the calling list (Figure 2(a)), thekibetween
AF113ZL and BZ682ZR can be different accordingl{q .

l; =0,w; =0,if d, < 56)
l; =Lw; =1if 56)<d,, < 125¢ ]
I, =L,w; = 2, otherwise

C. Measuring Fluctuation Scaling of Communication

Activities

Normally a flight receives at least two messages¢hin
and hand off) from the controller when it traveries sector.
The more flights enter the sector, the more comoaiitn
activities there should be. It is difficult to quéy the
correlations between traffic and communication astmoller
communication activity emerges from the interactioith
traffic, airspace, and the human brain.

Instead of looking at how communication grows with

respect to traffic increases, we are interestatienfluctuation
of communications considering controller as a caxpl
system.

To describe complex systems
relationship between fluctuations in the activitf a
component and the average activity of the systeayloF's
series (or Taylor’'s scaling) has been observedanymatural
and human-driven systems, ranging from ecology esyst
through stock market to human dynamics [24, 25)ldrs
power law is named after L. R. Taylor in recogmitiof his
paper in 1961 [23]. The relationship is usuallyha following
from:

Fluctuation Jconstant x average/J, here a 0[1/2,1]

Based on the data over which the averages are,t#ken
Taylor's power law can be grouped into two categgiri
Temporal Fluctuation Scaling (TFS) and Ensemble
Fluctuation Scaling (EFS) [24]. Models for the explanation of
the origins of Taylor’s power laws can be found2a].

For a sector, we calculate the average of commtioica

f and the standard deviatiahaccording to fixed number of

the flights entering the sector. The calculation ba done for
sectors of different entering flights. Detailed @edure for
capture fluctuation scaling in controller commurti@a can be
found in[26].

Il
Experimental data used in this paper includes ATBOS

EXPERIMENTAL DATA

Corpus Data, Paris TMA simulation data, and some

operational Data obtained from FAA.

A. Paris TMA Smulation Data

Paris TMA data was recorded during a two weeks-real

time simulation at EUROCONTROL Experimental Ceritre
June 2010. The purpose of this simulation was & tee
viability of improvements proposed by French DSNAthe
ATM system serving Paris-Charles De Gaulle, Parig-@nd
Paris-Le Bourget airports.

in characterizing the

The simulation involved around 100 participants ro2e
weeks: 45 controller positions and 35 pilot posisio Thirty
sectors were simulated, which includes 11 sectbtfseoAthis-
Mons Control Centre, 13 approach positions, 2 ait
positions and 4 feeds. The traffic flows betweert@s of one
exercise are given in Figure. 3.

Traffic samples for simulation were based on thal re
traffic rate on 29 May, and 12 June, 2009. For emncin
configuration (facing west and facing east), twmpkes with
heavy traffic were prepared.
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Figure 3. Traffic flow between sectors in Paris TMA simudati Each node
corresponds to a sector. The circle nodes areettters recorded for analyzed,
while the squire ones are either feeding sectotBeosectors that are not listed
in the data. The widths of lines are proportiowathte traffic amount between
linked sectors, with green arrows standing for oirtg flows and the red ones
representing for incoming flows.

There were twenty exercises in total, with an ageraf
one hour and thirty minutes long for each exerciseong
them, fourteen exercises are identified as goodcesas that
were analyzed in this study. Form the recorded dagteick
up three data sets that are necessary for ourtigagen. For
each exercise, data include:

1) Radio communication data. This one contains the start
time and end time of the communication made by
controller or pilots. Information on the content of
communication is unavailable. There are an avekige
300 communication made by controller for each geicto
each exercise.

Pilots manipulating data. Pilot data was retrieved from
the flight simulator. The simulator recorded every
manipulation related to changes of flight motiorenide,
we could find in this dataset all call-signs and time of
pilot's entering instructions to change flight's tiom
(could be 1~2 seconds differences with the actuedrang
time due to system delay), as well as the types of
instructions. We use these data under the assumibtéd

2)



the clearances were granted by controller few s#son

before.

IV. EMPIRICAL RESULTS ANDDISCUSSION

3) Transfer Information. Each piece of record contains A. Temporal Characteristics

flight call-sign, transfer time, the sector it saling and
the sector it will be transferred to. Throughput tbé
sector varies from 30 to 100 aircraft during theamged
period (see Figure 2).

B. ATCOSM Data
The second dataset is the ATCOSIM Air Traffic Cohtr

1) Results

With the no-traffic-no-communication assumption, fivet
make a careful examination on the rates of ardeglarture
traffic of each sector. Although there were foypdy of traffic
configuration during the simulations, from the erwail
cumulative distributions of inter-arrival and intdeparture

Simulation Speech corpus of EUROCONTROL Experimentatimes we observe that traffic distributions varigistly in the

Centre. The aim of the ATCOSIM is to provide a sjee
database of non-prompted and clean ATC operatachpédt
consists of ten hours of communication data, whigtre
recorded during ATC
conducted between 20/01/1997 and 14/02/1997 [2Tly O
controllers’ voice was recorded and analyzed. Eesdord

same sector across all the exercises. Howeverfictraf
different types of sectors (e.g., ACC, APP, and ity
sectors) evolves more heterogeneously.

real-time simulations that were

The empirical distribution of the length of commeetion
made by both controller and pilots are also cateda

consists otirca one hour of communication data. Both speechshowing that most communication events last 3~bruis;

signal data and transcription of the utterancegttogr with the
complete annotation and meta-data for all uttergncan be
found in the database. The recorded simulation daé&s not
include information on traffic and airspace cor@sging to
the communication data.

The general information of the whole fifty exercsis
shown in Table 1. The detailed information on eaxbrcise is
not given here.

Table 1.Information on the 50 exercises in the ATCOSIMathaise

TOTAL AVERAGE
Length of the exercise (hh:mm:ss ) 59:18:37 1011
Number of the flights domplete flights*) | 3121
identified in the exercise (1966) 62.42 (40)
Number of the communication events10078
(Unidentified) in the exercise (1276) | 20156 (26)

*Complete flight is the flight that receives botiand-in message andandout message.

C. FAA Operational Data

To investigate the other factors effects on thetrotier
communication, such as culture, we obtained daim fthe
Federal Aviation Administration. The data were lothea the
operational data recorded in the Kansas City in9199
consists of 8 samples, including four sectors, arBector
14, Sector 30, Sector 52, and Sector 54. In tthate are 999
communication events. On average, each traffic &arhpas
125 communication events. Around 47% of communicati
was made by the radar controller, 53% was madédéypiiots
and the other controllers (see [19] for details).

It was found that each traffic sample is aroundribButes
long with around 10 flights in the sectors. The hemof the
identified flights in each sample is 15~20, whikee tflights
with both hand in and hand out message is evenrfeSueh
short period with few flights could not capture ttgnamic
property of individual controller activity. Howevat could be
used to test the collective phenomena from humaramycs
point of few. Therefore, we complement the tempgrait
with this data.

with few events lasting over 6 seconds. Both teaffi
distribution and length of communication give arewew of
the simulation.

Building upon prior research, we investigated
distribution of inter-communication times in eachct®rs.
Results showed that, typically, if the data hasower law
distributionp(7) = =7, then the behavior of complementary

cumulative distributions functions (CCDF) in thegdtmg plot
will be a straight line with the slope ofa [28]. In practice,
few empirical data obey power laws. For most cadats with
value greater than a minimum threshold can exfailftrm of
power law.

Here we use the method described in [29] to test an
estimate the parameters of power-lavandt . Both the

probability distribution (PD) and the CCDF of inter
communication times for an exercise over a sector be

plotted on log-log scale. Figure 4 shows the
communication times in an exercise of sector AOlW8an be
seen from the probability plot in inset of Figuréay that
communication activities exhibit the heavy tailedtidbution
over 10 seconds.

Almost all exercises have the same distributicapsis with
different scales. It suggests that communicatiota dar the
same sector are homogenous, allowing us to groapntier-
communication times of each sector across all é&sesc

The CCDF of the grouped data is plotted in the nyudém
of Figure 4(a). The solid line in the main figuréearly
indicates the power-law fitting of the data. We én@xamined
all involved sectors, and we found that the exptsehpower-
law fitting ¢ 0 [2.5, 2.9], with the cut off aty,  =12(@5)-

the

inter-
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Figure 4. Distributions of inter-communication times. (a), €fmain figure is the complementary cumulative distions functions (CCDF) of inter-
communication times in sector AOUS across all tker@ses. The blue dots correspond to empirical,dakhile the solid line is the power-law fittinghd inset
figure shows the probability of inter times of eaotercise of the sector, with different colors @rker stands for different exercises. (b), The CQRFE of FAA
data

Four approach sectors (DENPG, DESPG, INNPG, andistribution, as degree distribution shows the nemiof

ITBPG), and one ACC sector (THLN) have the exposientneighbor flights which were grouped by controller.

higher than 3. Figure 4(b) shows the inter-commation
times of FAA data, which also indicates a power-tiegays.

2) Discussion

A recent report of human dynamics [12] has showth bo
empirical evidences and simulation results for Hieodal
distribution rather than the single form of powawl
distribution in  human communications.
difference from the Barabasi’s model [10] is theide from
the priority-based queuing for decision-making, ta@dom
Poisson processes as well as the interaction aimdngduals
contribute to the heavy-tailed feature of humanadhyits.

Controller communication shows a heavy tailed bira
and it is not the bimodal distribution uncovered short
message-sending activities [12], therefore the offutand
heavy-tail here should be interpreted with cautibime major
factors are the inter-dependence of communicatioth the
dependence on the pilots’ communication. We hyptee
that the priority-based queuing process (that Wil well
explain the priority of strategies management psectogether
with the Markov process which take the effect gpeledence
of communication and interaction into account) doekplain
the complex communication phenomena.

B. Spatial Characteristics
1) Results

Along with the patterns of temporal behavior,
measured thepatial behavior of controller by reconstructing
the communication trajectories. The network of terap
events of communication can capture the relatigsslof
flights in controller's mind.

Topological changes were measured with charadterist
that focus on the nodes’ connectivity and degresridution

and that have been used in prior research on nletwo

dynamics. The connectivity may has less meaning tiegree

A significant

We have tested the effects of differayt. andw,,, on the
network properties. The degreey () of the flighti is the

number of the neighbors in the network, which iatks how
many flights that flighthas been involved with. Hence, we

have
d=>1L,
j

Note that a pair of flights can been linked becatlsy

occurred in the predetermined time window only once

However, there could be the result of random sielect
Communicating with the second flight may have naghio do
with controller strategy. In contrast, if this paif flights
occurred several times during communication, tHsarty
suggests that either because of physical relatipnsétween
flights, or because of the group abstraction toigaie
cognitive complexity, controller communicate withet two
flights alternately. Following this logic, we measuthe
number of neighbors of each flight under differamight of
link by calculation as:

d= > W
12 W 2Whin
To our surprise, the degree distributions haveegsiinilar
shapes across all the sectors. With, fixed andw,,, <3,

instead of a random distribution, most of data lbanlescribed
as a Poisson distribution or Normal distributioeg($-igure 5).

We Such trends appear commonly in the random netwioidkiex

by Erdos and Renyi [30] and each edge is presesmtbsent
with equal probability.

This suggests that the pairs of flights are unifgrm

selected. Withw,, increases, the distribution moves towards

left which means there are fewer flights have ladggree
Iyvhile most flights have few neighbor flights, aroktaverage
of degree for all flights decreases. A differenpey of



distribution possibly emerges whem,, exceed 4. Most distribution of degree in complex network [10]. Wen see

; ; ; ; that controller keeps few “important flights” inetin call list,
Eggtﬁbgfsv_e a small degree, while few flights|stiave more and the other flights are attached to these flig¥ite higher

probability.
Due to limited size of the network, we cannot giae
positive fitting the data with power-law distriboti although
the data exhibits such trends. The change on degr
distribution suggests a transformation of the nekwo
Reasonable explanation could be the “preferentiathment”
proposed by Barabasi for the explanation of power-|

In addition, we can see that the maximum probabdit
%_Be degree is correlated to the number of adjasectors (see
igure 6). Interpretably, the more adjacent se@msctor has,
the climax of the degree will be. For instance t@eAOUS,
THLN and TML.
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Figure 5. Degree distributions of spatial networks in ACGtses (the first two rows) and in APP sectors (et two rows), both with the min distance
between flight is 60 seconds. The horizontal-axihe degree, while the vertical-axis is the pesmgmof nodes (flights).
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Figure 6. Number of adjacent sectors. For each simulatiomcises the
number of adjacent sectors of a sector can berauatdly examining the
traffic  transfer information. Because of differensimulation
configurations, there are slightly differences asrall exercises with the
standard deviation around 1.

2) Discussion

The currently results were based on the pilot maatmg
data related to flight motion change which wereorded by
the flight simulator. Although there may be few @eds of
delay between the controller sending the clearancghange
flight heading, speed, or altitude, these dataotfl the willing
or the intention of controller about how he/she tsaraffic to
evolve. The fact is that controller dynamically obas the
strategies according to the traffic. Spatial bebawaptures
the patterns of selecting flights to some exteht Tink of the
temporal behavior and spatial behavior may lead toetter
understanding of controller’s activities. Therefdreill likely
shed light on other human factors related problems.

f
@)

C. Fluctuation Scaling
1) Results

We regroup the data of each sector to examineslatians
between the amount of traffic and that of commutivea

Results show that both the average and the standard
deviation of the communication activities grow ddycas the
number of flights increases. Because of the limitachber of
exercises (14 exercises) for each sector, we obdestronger
fluctuations at the beginning of the tests.

When we plotted the standard deviation accordingh&
average of the communication activities, as shawRigure 7
(a), we observe linear fit of the empirical datathe log-log
plot (solid red line). Hence, the standard deviataf the
activities and the average activities do exhibilemr Taylor’s
power-law relationship with = 0.56536.

After adding the ATCOSIM data, the slope changed
slightly, while the whole dataset still can be ddsed with a
power-law form witha = 0.59649

2) Discussion

The detection of fluctuation scaling was particiylar
noteworthy. On one hand, it captures the intergstidaptive
phenomena of controller activity with respect t@dming
traffic. Together with the temporal characteristias
communication, it may provide a way to understahé t
general properties of the controller’s activitiesass different
incoming traffic.

On the other hand, it may reveal the inherent eatdithe
system with the controller as an important elemienthe
system. With the system continues to evolve; sumhpbex
phenomena are critical to our understanding ofdyreamical
aspects of the evolution.
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Figure 7. Fluctuation scaling for communication activitiés) results from Paris TMA data, and in (b) we #uel ATCOSIM data (the red dots in the inset
figure) to compare the fitting forms. The fittedp@xents are shown with errdr0.04 due to logarithmically binning data. Pointgeviagarithmically binned
and log sigma was averaged for better visibilibe error bars represent the standard deviationdeitse bins. The inset shows the same axis rdnge,

without binning.



V.

Investigations on historical data have been undogehe
striking statistical properties of human activitiesading us to a
guantitative understanding of the rules governingman
actions. The present work shows that controllererint
communication does exhibit the heavy-tailed feasinglar to
other daily human interactive activities.

CONCLUSIONS

However, such results should be interpreted witltica
because the decaying functions may vary accordinigaffic
and sectors.

In addition, we have demonstrated that network dyos-
based approach can capture the underlying pattefs
controller communication activity. The proposed r@aagh has
complementary role in the study of controller wodd and
cognitive complexity.

The fluctuation scaling of communication suggedtat t
controller, as a complex system, his/her activitiaa be well
characterized by a complex system approach.

Our results must be considered in
limitations of the present study. First, our engatidata were
mainly based on Paris TMA simulation data contajranound
twenty-one hours’ busy traffic and communicatiotivaty data
for each sector. Although the results show quitdlar general
patterns among different exercise data, it stidldseto be tested
with other different data.

Also the homogeneous and heterogeneous propentedds
be examined. The spatial network is able to recocisthe
activity trajectory, so that it is easier to analythe data by the
use of network dynamics approaches. We note tleagtbup-
based abstraction is a dynamic strategy rather stetic one.
More systematic exploration of the influence offftcaand
airspace factors on controller activities is needed

We anticipate that with the knowledge of previouskvon
workload and cognitive complexity, the use of dditixen
approach will further advance the understanding ttoé
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light of several
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(DASC 2002), pp. 7A4-1-7A4-13 vol.2.

P. Averty, C. Dittmar, S. Athenes, E. Vernet-MauiMental workload
in air traffic control - An index constructed frofield tests,” Aviation,
Space, and Environmental Medicine., vol. Vol. 75, no. 4, pp. 333-341.
Apr. 2004, 2004.

A. D. Yousefi, George L, “Temporal and spatial disition of airspace
complexity for air traffic controller workload-badeectorization,’AIAA
4th Aviation Technology, Integration and Operations (ATIO) Forum;
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I. V. Laudeman, S. Shelden, R. Branstrom et alyrf@mic density: An
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Aeronautics and Space Administration, Ames Rese@ettter, 1998.

B. Sridhar, K. S. Sheth, and S. Grabbe, "Airspamaptexity and its
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S. Loft, P. Sanderson, A. Neal et al., “Modelingl gredicting mental
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dynamics of the ATM system as a human-driven system

Future work should focus on using existing modsigh as
random walk, priority-based queuing, and prefeenti
attachment for modeling the human controller system
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